MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rusgrprop Structured version   Visualization version   Unicode version

Theorem rusgrprop 26458
Description: The properties of a k-regular simple graph. (Contributed by Alexander van der Vekens, 8-Jul-2018.) (Revised by AV, 18-Dec-2020.)
Assertion
Ref Expression
rusgrprop  |-  ( G RegUSGraph  K  ->  ( G  e. USGraph  /\  G RegGraph  K ) )

Proof of Theorem rusgrprop
Dummy variables  g 
k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rusgr 26454 . . . 4  |- RegUSGraph  =  { <. g ,  k >.  |  ( g  e. USGraph  /\  g RegGraph  k ) }
21breqi 4659 . . 3  |-  ( G RegUSGraph  K 
<->  G { <. g ,  k >.  |  ( g  e. USGraph  /\  g RegGraph  k ) } K )
3 brabv 6699 . . 3  |-  ( G { <. g ,  k
>.  |  ( g  e. USGraph  /\  g RegGraph  k ) } K  ->  ( G  e.  _V  /\  K  e.  _V ) )
42, 3sylbi 207 . 2  |-  ( G RegUSGraph  K  ->  ( G  e. 
_V  /\  K  e.  _V ) )
5 isrusgr 26457 . . 3  |-  ( ( G  e.  _V  /\  K  e.  _V )  ->  ( G RegUSGraph  K  <->  ( G  e. USGraph  /\  G RegGraph  K )
) )
65biimpd 219 . 2  |-  ( ( G  e.  _V  /\  K  e.  _V )  ->  ( G RegUSGraph  K  ->  ( G  e. USGraph  /\  G RegGraph  K ) ) )
74, 6mpcom 38 1  |-  ( G RegUSGraph  K  ->  ( G  e. USGraph  /\  G RegGraph  K ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    e. wcel 1990   _Vcvv 3200   class class class wbr 4653   {copab 4712   USGraph cusgr 26044   RegGraph crgr 26451   RegUSGraph crusgr 26452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-rusgr 26454
This theorem is referenced by:  rusgrrgr  26459  rusgrusgr  26460  rusgrprop0  26463
  Copyright terms: Public domain W3C validator