| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isrusgr | Structured version Visualization version Unicode version | ||
| Description: The property of being a k-regular simple graph. (Contributed by Alexander van der Vekens, 7-Jul-2018.) (Revised by AV, 18-Dec-2020.) |
| Ref | Expression |
|---|---|
| isrusgr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2689 |
. . . . 5
| |
| 2 | 1 | adantr 481 |
. . . 4
|
| 3 | breq12 4658 |
. . . 4
| |
| 4 | 2, 3 | anbi12d 747 |
. . 3
|
| 5 | df-rusgr 26454 |
. . 3
| |
| 6 | 4, 5 | brabga 4989 |
. 2
|
| 7 | biidd 252 |
. 2
| |
| 8 | 6, 7 | bitrd 268 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-rusgr 26454 |
| This theorem is referenced by: rusgrprop 26458 isrusgr0 26462 usgr0edg0rusgr 26471 0vtxrusgr 26473 |
| Copyright terms: Public domain | W3C validator |