Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  f1omptsnlem Structured version   Visualization version   Unicode version

Theorem f1omptsnlem 33183
Description: This is the core of the proof of f1omptsn 33184, but to avoid the distinct variables on the definitions, we split this proof into two. (Contributed by ML, 15-Jul-2020.)
Hypotheses
Ref Expression
f1omptsn.f  |-  F  =  ( x  e.  A  |->  { x } )
f1omptsn.r  |-  R  =  { u  |  E. x  e.  A  u  =  { x } }
Assertion
Ref Expression
f1omptsnlem  |-  F : A
-1-1-onto-> R
Distinct variable groups:    x, A, u    x, F    u, R, x
Allowed substitution hint:    F( u)

Proof of Theorem f1omptsnlem
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 f1omptsn.f . . . . 5  |-  F  =  ( x  e.  A  |->  { x } )
2 eqid 2622 . . . . . . 7  |-  { x }  =  { x }
3 snex 4908 . . . . . . . 8  |-  { x }  e.  _V
4 eqsbc3 3475 . . . . . . . 8  |-  ( { x }  e.  _V  ->  ( [. { x }  /  u ]. u  =  { x }  <->  { x }  =  { x } ) )
53, 4ax-mp 5 . . . . . . 7  |-  ( [. { x }  /  u ]. u  =  {
x }  <->  { x }  =  { x } )
62, 5mpbir 221 . . . . . 6  |-  [. {
x }  /  u ]. u  =  {
x }
7 sbcel2 3989 . . . . . . . 8  |-  ( [. { x }  /  u ]. x  e.  A  <->  x  e.  [_ { x }  /  u ]_ A
)
8 csbconstg 3546 . . . . . . . . . 10  |-  ( { x }  e.  _V  ->  [_ { x }  /  u ]_ A  =  A )
93, 8ax-mp 5 . . . . . . . . 9  |-  [_ {
x }  /  u ]_ A  =  A
109eleq2i 2693 . . . . . . . 8  |-  ( x  e.  [_ { x }  /  u ]_ A  <->  x  e.  A )
117, 10bitri 264 . . . . . . 7  |-  ( [. { x }  /  u ]. x  e.  A  <->  x  e.  A )
12 f1omptsn.r . . . . . . . . . . . . . 14  |-  R  =  { u  |  E. x  e.  A  u  =  { x } }
1312abeq2i 2735 . . . . . . . . . . . . 13  |-  ( u  e.  R  <->  E. x  e.  A  u  =  { x } )
14 df-rex 2918 . . . . . . . . . . . . 13  |-  ( E. x  e.  A  u  =  { x }  <->  E. x ( x  e.  A  /\  u  =  { x } ) )
1513, 14sylbbr 226 . . . . . . . . . . . 12  |-  ( E. x ( x  e.  A  /\  u  =  { x } )  ->  u  e.  R
)
161519.23bi 2061 . . . . . . . . . . 11  |-  ( ( x  e.  A  /\  u  =  { x } )  ->  u  e.  R )
1716sbcth 3450 . . . . . . . . . 10  |-  ( { x }  e.  _V  ->  [. { x }  /  u ]. ( ( x  e.  A  /\  u  =  { x } )  ->  u  e.  R ) )
183, 17ax-mp 5 . . . . . . . . 9  |-  [. {
x }  /  u ]. ( ( x  e.  A  /\  u  =  { x } )  ->  u  e.  R
)
19 sbcimg 3477 . . . . . . . . . 10  |-  ( { x }  e.  _V  ->  ( [. { x }  /  u ]. (
( x  e.  A  /\  u  =  {
x } )  ->  u  e.  R )  <->  (
[. { x }  /  u ]. ( x  e.  A  /\  u  =  { x } )  ->  [. { x }  /  u ]. u  e.  R ) ) )
203, 19ax-mp 5 . . . . . . . . 9  |-  ( [. { x }  /  u ]. ( ( x  e.  A  /\  u  =  { x } )  ->  u  e.  R
)  <->  ( [. {
x }  /  u ]. ( x  e.  A  /\  u  =  {
x } )  ->  [. { x }  /  u ]. u  e.  R
) )
2118, 20mpbi 220 . . . . . . . 8  |-  ( [. { x }  /  u ]. ( x  e.  A  /\  u  =  { x } )  ->  [. { x }  /  u ]. u  e.  R )
22 sbcan 3478 . . . . . . . 8  |-  ( [. { x }  /  u ]. ( x  e.  A  /\  u  =  { x } )  <-> 
( [. { x }  /  u ]. x  e.  A  /\  [. {
x }  /  u ]. u  =  {
x } ) )
23 sbcel1v 3495 . . . . . . . 8  |-  ( [. { x }  /  u ]. u  e.  R  <->  { x }  e.  R
)
2421, 22, 233imtr3i 280 . . . . . . 7  |-  ( (
[. { x }  /  u ]. x  e.  A  /\  [. {
x }  /  u ]. u  =  {
x } )  ->  { x }  e.  R )
2511, 24sylanbr 490 . . . . . 6  |-  ( ( x  e.  A  /\  [. { x }  /  u ]. u  =  {
x } )  ->  { x }  e.  R )
266, 25mpan2 707 . . . . 5  |-  ( x  e.  A  ->  { x }  e.  R )
271, 26fmpti 6383 . . . 4  |-  F : A
--> R
281fvmpt2 6291 . . . . . . . . 9  |-  ( ( x  e.  A  /\  { x }  e.  R
)  ->  ( F `  x )  =  {
x } )
2926, 28mpdan 702 . . . . . . . 8  |-  ( x  e.  A  ->  ( F `  x )  =  { x } )
30 sneq 4187 . . . . . . . . 9  |-  ( x  =  y  ->  { x }  =  { y } )
3130, 1, 3fvmpt3i 6287 . . . . . . . 8  |-  ( y  e.  A  ->  ( F `  y )  =  { y } )
3229, 31eqeqan12d 2638 . . . . . . 7  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( ( F `  x )  =  ( F `  y )  <->  { x }  =  { y } ) )
33 vex 3203 . . . . . . . 8  |-  x  e. 
_V
34 sneqbg 4374 . . . . . . . 8  |-  ( x  e.  _V  ->  ( { x }  =  { y }  <->  x  =  y ) )
3533, 34ax-mp 5 . . . . . . 7  |-  ( { x }  =  {
y }  <->  x  =  y )
3632, 35syl6bb 276 . . . . . 6  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( ( F `  x )  =  ( F `  y )  <-> 
x  =  y ) )
3736biimpd 219 . . . . 5  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( ( F `  x )  =  ( F `  y )  ->  x  =  y ) )
3837rgen2a 2977 . . . 4  |-  A. x  e.  A  A. y  e.  A  ( ( F `  x )  =  ( F `  y )  ->  x  =  y )
39 dff13 6512 . . . 4  |-  ( F : A -1-1-> R  <->  ( F : A --> R  /\  A. x  e.  A  A. y  e.  A  (
( F `  x
)  =  ( F `
 y )  ->  x  =  y )
) )
4027, 38, 39mpbir2an 955 . . 3  |-  F : A -1-1-> R
41 f1f1orn 6148 . . 3  |-  ( F : A -1-1-> R  ->  F : A -1-1-onto-> ran  F )
4240, 41ax-mp 5 . 2  |-  F : A
-1-1-onto-> ran  F
43 rnmptsn 33182 . . . 4  |-  ran  (
x  e.  A  |->  { x } )  =  { u  |  E. x  e.  A  u  =  { x } }
441rneqi 5352 . . . 4  |-  ran  F  =  ran  ( x  e.  A  |->  { x }
)
4543, 44, 123eqtr4i 2654 . . 3  |-  ran  F  =  R
46 f1oeq3 6129 . . 3  |-  ( ran 
F  =  R  -> 
( F : A -1-1-onto-> ran  F  <-> 
F : A -1-1-onto-> R ) )
4745, 46ax-mp 5 . 2  |-  ( F : A -1-1-onto-> ran  F  <->  F : A
-1-1-onto-> R )
4842, 47mpbi 220 1  |-  F : A
-1-1-onto-> R
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   {cab 2608   A.wral 2912   E.wrex 2913   _Vcvv 3200   [.wsbc 3435   [_csb 3533   {csn 4177    |-> cmpt 4729   ran crn 5115   -->wf 5884   -1-1->wf1 5885   -1-1-onto->wf1o 5887   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896
This theorem is referenced by:  f1omptsn  33184
  Copyright terms: Public domain W3C validator