MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbthlem8 Structured version   Visualization version   Unicode version

Theorem sbthlem8 8077
Description: Lemma for sbth 8080. (Contributed by NM, 27-Mar-1998.)
Hypotheses
Ref Expression
sbthlem.1  |-  A  e. 
_V
sbthlem.2  |-  D  =  { x  |  ( x  C_  A  /\  ( g " ( B  \  ( f "
x ) ) ) 
C_  ( A  \  x ) ) }
sbthlem.3  |-  H  =  ( ( f  |`  U. D )  u.  ( `' g  |`  ( A 
\  U. D ) ) )
Assertion
Ref Expression
sbthlem8  |-  ( ( Fun  `' f  /\  ( ( ( Fun  g  /\  dom  g  =  B )  /\  ran  g  C_  A )  /\  Fun  `' g ) )  ->  Fun  `' H
)
Distinct variable groups:    x, A    x, B    x, D    x, f    x, g    x, H
Allowed substitution hints:    A( f, g)    B( f, g)    D( f, g)    H( f, g)

Proof of Theorem sbthlem8
StepHypRef Expression
1 funres11 5966 . . . 4  |-  ( Fun  `' f  ->  Fun  `' ( f  |`  U. D
) )
2 funcnvcnv 5956 . . . . . 6  |-  ( Fun  g  ->  Fun  `' `' g )
3 funres11 5966 . . . . . 6  |-  ( Fun  `' `' g  ->  Fun  `' ( `' g  |`  ( A 
\  U. D ) ) )
42, 3syl 17 . . . . 5  |-  ( Fun  g  ->  Fun  `' ( `' g  |`  ( A 
\  U. D ) ) )
54ad3antrrr 766 . . . 4  |-  ( ( ( ( Fun  g  /\  dom  g  =  B )  /\  ran  g  C_  A )  /\  Fun  `' g )  ->  Fun  `' ( `' g  |`  ( A  \  U. D
) ) )
61, 5anim12i 590 . . 3  |-  ( ( Fun  `' f  /\  ( ( ( Fun  g  /\  dom  g  =  B )  /\  ran  g  C_  A )  /\  Fun  `' g ) )  ->  ( Fun  `' ( f  |`  U. D
)  /\  Fun  `' ( `' g  |`  ( A 
\  U. D ) ) ) )
7 df-ima 5127 . . . . . . . 8  |-  ( f
" U. D )  =  ran  ( f  |`  U. D )
8 df-rn 5125 . . . . . . . 8  |-  ran  (
f  |`  U. D )  =  dom  `' ( f  |`  U. D )
97, 8eqtr2i 2645 . . . . . . 7  |-  dom  `' ( f  |`  U. D
)  =  ( f
" U. D )
10 df-ima 5127 . . . . . . . . 9  |-  ( `' g " ( A 
\  U. D ) )  =  ran  ( `' g  |`  ( A  \ 
U. D ) )
11 df-rn 5125 . . . . . . . . 9  |-  ran  ( `' g  |`  ( A 
\  U. D ) )  =  dom  `' ( `' g  |`  ( A 
\  U. D ) )
1210, 11eqtri 2644 . . . . . . . 8  |-  ( `' g " ( A 
\  U. D ) )  =  dom  `' ( `' g  |`  ( A 
\  U. D ) )
13 sbthlem.1 . . . . . . . . 9  |-  A  e. 
_V
14 sbthlem.2 . . . . . . . . 9  |-  D  =  { x  |  ( x  C_  A  /\  ( g " ( B  \  ( f "
x ) ) ) 
C_  ( A  \  x ) ) }
1513, 14sbthlem4 8073 . . . . . . . 8  |-  ( ( ( dom  g  =  B  /\  ran  g  C_  A )  /\  Fun  `' g )  ->  ( `' g " ( A  \  U. D ) )  =  ( B 
\  ( f " U. D ) ) )
1612, 15syl5eqr 2670 . . . . . . 7  |-  ( ( ( dom  g  =  B  /\  ran  g  C_  A )  /\  Fun  `' g )  ->  dom  `' ( `' g  |`  ( A  \  U. D
) )  =  ( B  \  ( f
" U. D ) ) )
17 ineq12 3809 . . . . . . 7  |-  ( ( dom  `' ( f  |`  U. D )  =  ( f " U. D )  /\  dom  `' ( `' g  |`  ( A  \  U. D
) )  =  ( B  \  ( f
" U. D ) ) )  ->  ( dom  `' ( f  |`  U. D )  i^i  dom  `' ( `' g  |`  ( A  \  U. D
) ) )  =  ( ( f " U. D )  i^i  ( B  \  ( f " U. D ) ) ) )
189, 16, 17sylancr 695 . . . . . 6  |-  ( ( ( dom  g  =  B  /\  ran  g  C_  A )  /\  Fun  `' g )  ->  ( dom  `' ( f  |`  U. D )  i^i  dom  `' ( `' g  |`  ( A  \  U. D
) ) )  =  ( ( f " U. D )  i^i  ( B  \  ( f " U. D ) ) ) )
19 disjdif 4040 . . . . . 6  |-  ( ( f " U. D
)  i^i  ( B  \  ( f " U. D ) ) )  =  (/)
2018, 19syl6eq 2672 . . . . 5  |-  ( ( ( dom  g  =  B  /\  ran  g  C_  A )  /\  Fun  `' g )  ->  ( dom  `' ( f  |`  U. D )  i^i  dom  `' ( `' g  |`  ( A  \  U. D
) ) )  =  (/) )
2120adantlll 754 . . . 4  |-  ( ( ( ( Fun  g  /\  dom  g  =  B )  /\  ran  g  C_  A )  /\  Fun  `' g )  ->  ( dom  `' ( f  |`  U. D )  i^i  dom  `' ( `' g  |`  ( A  \  U. D
) ) )  =  (/) )
2221adantl 482 . . 3  |-  ( ( Fun  `' f  /\  ( ( ( Fun  g  /\  dom  g  =  B )  /\  ran  g  C_  A )  /\  Fun  `' g ) )  ->  ( dom  `' ( f  |`  U. D
)  i^i  dom  `' ( `' g  |`  ( A 
\  U. D ) ) )  =  (/) )
23 funun 5932 . . 3  |-  ( ( ( Fun  `' ( f  |`  U. D )  /\  Fun  `' ( `' g  |`  ( A 
\  U. D ) ) )  /\  ( dom  `' ( f  |`  U. D )  i^i  dom  `' ( `' g  |`  ( A  \  U. D
) ) )  =  (/) )  ->  Fun  ( `' ( f  |`  U. D )  u.  `' ( `' g  |`  ( A 
\  U. D ) ) ) )
246, 22, 23syl2anc 693 . 2  |-  ( ( Fun  `' f  /\  ( ( ( Fun  g  /\  dom  g  =  B )  /\  ran  g  C_  A )  /\  Fun  `' g ) )  ->  Fun  ( `' ( f  |`  U. D
)  u.  `' ( `' g  |`  ( A 
\  U. D ) ) ) )
25 sbthlem.3 . . . . 5  |-  H  =  ( ( f  |`  U. D )  u.  ( `' g  |`  ( A 
\  U. D ) ) )
2625cnveqi 5297 . . . 4  |-  `' H  =  `' ( ( f  |`  U. D )  u.  ( `' g  |`  ( A  \  U. D
) ) )
27 cnvun 5538 . . . 4  |-  `' ( ( f  |`  U. D
)  u.  ( `' g  |`  ( A  \ 
U. D ) ) )  =  ( `' ( f  |`  U. D
)  u.  `' ( `' g  |`  ( A 
\  U. D ) ) )
2826, 27eqtri 2644 . . 3  |-  `' H  =  ( `' ( f  |`  U. D )  u.  `' ( `' g  |`  ( A  \ 
U. D ) ) )
2928funeqi 5909 . 2  |-  ( Fun  `' H  <->  Fun  ( `' ( f  |`  U. D )  u.  `' ( `' g  |`  ( A  \ 
U. D ) ) ) )
3024, 29sylibr 224 1  |-  ( ( Fun  `' f  /\  ( ( ( Fun  g  /\  dom  g  =  B )  /\  ran  g  C_  A )  /\  Fun  `' g ) )  ->  Fun  `' H
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608   _Vcvv 3200    \ cdif 3571    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   U.cuni 4436   `'ccnv 5113   dom cdm 5114   ran crn 5115    |` cres 5116   "cima 5117   Fun wfun 5882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-fun 5890
This theorem is referenced by:  sbthlem9  8078
  Copyright terms: Public domain W3C validator