| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbthlem9 | Structured version Visualization version Unicode version | ||
| Description: Lemma for sbth 8080. (Contributed by NM, 28-Mar-1998.) |
| Ref | Expression |
|---|---|
| sbthlem.1 |
|
| sbthlem.2 |
|
| sbthlem.3 |
|
| Ref | Expression |
|---|---|
| sbthlem9 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbthlem.1 |
. . . . . . . 8
| |
| 2 | sbthlem.2 |
. . . . . . . 8
| |
| 3 | sbthlem.3 |
. . . . . . . 8
| |
| 4 | 1, 2, 3 | sbthlem7 8076 |
. . . . . . 7
|
| 5 | 1, 2, 3 | sbthlem5 8074 |
. . . . . . . 8
|
| 6 | 5 | adantrl 752 |
. . . . . . 7
|
| 7 | 4, 6 | anim12i 590 |
. . . . . 6
|
| 8 | 7 | an42s 870 |
. . . . 5
|
| 9 | 8 | adantlr 751 |
. . . 4
|
| 10 | 9 | adantlr 751 |
. . 3
|
| 11 | 1, 2, 3 | sbthlem8 8077 |
. . . 4
|
| 12 | 11 | adantll 750 |
. . 3
|
| 13 | simpr 477 |
. . . . . . 7
| |
| 14 | 13 | anim1i 592 |
. . . . . 6
|
| 15 | df-rn 5125 |
. . . . . . 7
| |
| 16 | 1, 2, 3 | sbthlem6 8075 |
. . . . . . 7
|
| 17 | 15, 16 | syl5eqr 2670 |
. . . . . 6
|
| 18 | 14, 17 | sylanr1 684 |
. . . . 5
|
| 19 | 18 | adantll 750 |
. . . 4
|
| 20 | 19 | adantlr 751 |
. . 3
|
| 21 | 10, 12, 20 | jca32 558 |
. 2
|
| 22 | df-f1 5893 |
. . . 4
| |
| 23 | df-f 5892 |
. . . . . 6
| |
| 24 | df-fn 5891 |
. . . . . . 7
| |
| 25 | 24 | anbi1i 731 |
. . . . . 6
|
| 26 | 23, 25 | bitri 264 |
. . . . 5
|
| 27 | 26 | anbi1i 731 |
. . . 4
|
| 28 | 22, 27 | bitri 264 |
. . 3
|
| 29 | df-f1 5893 |
. . . 4
| |
| 30 | df-f 5892 |
. . . . . 6
| |
| 31 | df-fn 5891 |
. . . . . . 7
| |
| 32 | 31 | anbi1i 731 |
. . . . . 6
|
| 33 | 30, 32 | bitri 264 |
. . . . 5
|
| 34 | 33 | anbi1i 731 |
. . . 4
|
| 35 | 29, 34 | bitri 264 |
. . 3
|
| 36 | 28, 35 | anbi12i 733 |
. 2
|
| 37 | dff1o4 6145 |
. . 3
| |
| 38 | df-fn 5891 |
. . . 4
| |
| 39 | df-fn 5891 |
. . . 4
| |
| 40 | 38, 39 | anbi12i 733 |
. . 3
|
| 41 | 37, 40 | bitri 264 |
. 2
|
| 42 | 21, 36, 41 | 3imtr4i 281 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 |
| This theorem is referenced by: sbthlem10 8079 |
| Copyright terms: Public domain | W3C validator |