MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbthlem9 Structured version   Visualization version   Unicode version

Theorem sbthlem9 8078
Description: Lemma for sbth 8080. (Contributed by NM, 28-Mar-1998.)
Hypotheses
Ref Expression
sbthlem.1  |-  A  e. 
_V
sbthlem.2  |-  D  =  { x  |  ( x  C_  A  /\  ( g " ( B  \  ( f "
x ) ) ) 
C_  ( A  \  x ) ) }
sbthlem.3  |-  H  =  ( ( f  |`  U. D )  u.  ( `' g  |`  ( A 
\  U. D ) ) )
Assertion
Ref Expression
sbthlem9  |-  ( ( f : A -1-1-> B  /\  g : B -1-1-> A
)  ->  H : A
-1-1-onto-> B )
Distinct variable groups:    x, A    x, B    x, D    x, f    x, g    x, H
Allowed substitution hints:    A( f, g)    B( f, g)    D( f, g)    H( f, g)

Proof of Theorem sbthlem9
StepHypRef Expression
1 sbthlem.1 . . . . . . . 8  |-  A  e. 
_V
2 sbthlem.2 . . . . . . . 8  |-  D  =  { x  |  ( x  C_  A  /\  ( g " ( B  \  ( f "
x ) ) ) 
C_  ( A  \  x ) ) }
3 sbthlem.3 . . . . . . . 8  |-  H  =  ( ( f  |`  U. D )  u.  ( `' g  |`  ( A 
\  U. D ) ) )
41, 2, 3sbthlem7 8076 . . . . . . 7  |-  ( ( Fun  f  /\  Fun  `' g )  ->  Fun  H )
51, 2, 3sbthlem5 8074 . . . . . . . 8  |-  ( ( dom  f  =  A  /\  ran  g  C_  A )  ->  dom  H  =  A )
65adantrl 752 . . . . . . 7  |-  ( ( dom  f  =  A  /\  ( ( Fun  g  /\  dom  g  =  B )  /\  ran  g  C_  A ) )  ->  dom  H  =  A )
74, 6anim12i 590 . . . . . 6  |-  ( ( ( Fun  f  /\  Fun  `' g )  /\  ( dom  f  =  A  /\  ( ( Fun  g  /\  dom  g  =  B )  /\  ran  g  C_  A ) ) )  ->  ( Fun  H  /\  dom  H  =  A ) )
87an42s 870 . . . . 5  |-  ( ( ( Fun  f  /\  dom  f  =  A
)  /\  ( (
( Fun  g  /\  dom  g  =  B
)  /\  ran  g  C_  A )  /\  Fun  `' g ) )  -> 
( Fun  H  /\  dom  H  =  A ) )
98adantlr 751 . . . 4  |-  ( ( ( ( Fun  f  /\  dom  f  =  A )  /\  ran  f  C_  B )  /\  (
( ( Fun  g  /\  dom  g  =  B )  /\  ran  g  C_  A )  /\  Fun  `' g ) )  -> 
( Fun  H  /\  dom  H  =  A ) )
109adantlr 751 . . 3  |-  ( ( ( ( ( Fun  f  /\  dom  f  =  A )  /\  ran  f  C_  B )  /\  Fun  `' f )  /\  ( ( ( Fun  g  /\  dom  g  =  B )  /\  ran  g  C_  A )  /\  Fun  `' g ) )  ->  ( Fun  H  /\  dom  H  =  A ) )
111, 2, 3sbthlem8 8077 . . . 4  |-  ( ( Fun  `' f  /\  ( ( ( Fun  g  /\  dom  g  =  B )  /\  ran  g  C_  A )  /\  Fun  `' g ) )  ->  Fun  `' H
)
1211adantll 750 . . 3  |-  ( ( ( ( ( Fun  f  /\  dom  f  =  A )  /\  ran  f  C_  B )  /\  Fun  `' f )  /\  ( ( ( Fun  g  /\  dom  g  =  B )  /\  ran  g  C_  A )  /\  Fun  `' g ) )  ->  Fun  `' H
)
13 simpr 477 . . . . . . 7  |-  ( ( Fun  g  /\  dom  g  =  B )  ->  dom  g  =  B )
1413anim1i 592 . . . . . 6  |-  ( ( ( Fun  g  /\  dom  g  =  B
)  /\  ran  g  C_  A )  ->  ( dom  g  =  B  /\  ran  g  C_  A
) )
15 df-rn 5125 . . . . . . 7  |-  ran  H  =  dom  `' H
161, 2, 3sbthlem6 8075 . . . . . . 7  |-  ( ( ran  f  C_  B  /\  ( ( dom  g  =  B  /\  ran  g  C_  A )  /\  Fun  `' g ) )  ->  ran  H  =  B )
1715, 16syl5eqr 2670 . . . . . 6  |-  ( ( ran  f  C_  B  /\  ( ( dom  g  =  B  /\  ran  g  C_  A )  /\  Fun  `' g ) )  ->  dom  `' H  =  B
)
1814, 17sylanr1 684 . . . . 5  |-  ( ( ran  f  C_  B  /\  ( ( ( Fun  g  /\  dom  g  =  B )  /\  ran  g  C_  A )  /\  Fun  `' g ) )  ->  dom  `' H  =  B )
1918adantll 750 . . . 4  |-  ( ( ( ( Fun  f  /\  dom  f  =  A )  /\  ran  f  C_  B )  /\  (
( ( Fun  g  /\  dom  g  =  B )  /\  ran  g  C_  A )  /\  Fun  `' g ) )  ->  dom  `' H  =  B
)
2019adantlr 751 . . 3  |-  ( ( ( ( ( Fun  f  /\  dom  f  =  A )  /\  ran  f  C_  B )  /\  Fun  `' f )  /\  ( ( ( Fun  g  /\  dom  g  =  B )  /\  ran  g  C_  A )  /\  Fun  `' g ) )  ->  dom  `' H  =  B )
2110, 12, 20jca32 558 . 2  |-  ( ( ( ( ( Fun  f  /\  dom  f  =  A )  /\  ran  f  C_  B )  /\  Fun  `' f )  /\  ( ( ( Fun  g  /\  dom  g  =  B )  /\  ran  g  C_  A )  /\  Fun  `' g ) )  ->  ( ( Fun 
H  /\  dom  H  =  A )  /\  ( Fun  `' H  /\  dom  `' H  =  B )
) )
22 df-f1 5893 . . . 4  |-  ( f : A -1-1-> B  <->  ( f : A --> B  /\  Fun  `' f ) )
23 df-f 5892 . . . . . 6  |-  ( f : A --> B  <->  ( f  Fn  A  /\  ran  f  C_  B ) )
24 df-fn 5891 . . . . . . 7  |-  ( f  Fn  A  <->  ( Fun  f  /\  dom  f  =  A ) )
2524anbi1i 731 . . . . . 6  |-  ( ( f  Fn  A  /\  ran  f  C_  B )  <-> 
( ( Fun  f  /\  dom  f  =  A )  /\  ran  f  C_  B ) )
2623, 25bitri 264 . . . . 5  |-  ( f : A --> B  <->  ( ( Fun  f  /\  dom  f  =  A )  /\  ran  f  C_  B ) )
2726anbi1i 731 . . . 4  |-  ( ( f : A --> B  /\  Fun  `' f )  <->  ( (
( Fun  f  /\  dom  f  =  A
)  /\  ran  f  C_  B )  /\  Fun  `' f ) )
2822, 27bitri 264 . . 3  |-  ( f : A -1-1-> B  <->  ( (
( Fun  f  /\  dom  f  =  A
)  /\  ran  f  C_  B )  /\  Fun  `' f ) )
29 df-f1 5893 . . . 4  |-  ( g : B -1-1-> A  <->  ( g : B --> A  /\  Fun  `' g ) )
30 df-f 5892 . . . . . 6  |-  ( g : B --> A  <->  ( g  Fn  B  /\  ran  g  C_  A ) )
31 df-fn 5891 . . . . . . 7  |-  ( g  Fn  B  <->  ( Fun  g  /\  dom  g  =  B ) )
3231anbi1i 731 . . . . . 6  |-  ( ( g  Fn  B  /\  ran  g  C_  A )  <-> 
( ( Fun  g  /\  dom  g  =  B )  /\  ran  g  C_  A ) )
3330, 32bitri 264 . . . . 5  |-  ( g : B --> A  <->  ( ( Fun  g  /\  dom  g  =  B )  /\  ran  g  C_  A ) )
3433anbi1i 731 . . . 4  |-  ( ( g : B --> A  /\  Fun  `' g )  <->  ( (
( Fun  g  /\  dom  g  =  B
)  /\  ran  g  C_  A )  /\  Fun  `' g ) )
3529, 34bitri 264 . . 3  |-  ( g : B -1-1-> A  <->  ( (
( Fun  g  /\  dom  g  =  B
)  /\  ran  g  C_  A )  /\  Fun  `' g ) )
3628, 35anbi12i 733 . 2  |-  ( ( f : A -1-1-> B  /\  g : B -1-1-> A
)  <->  ( ( ( ( Fun  f  /\  dom  f  =  A
)  /\  ran  f  C_  B )  /\  Fun  `' f )  /\  (
( ( Fun  g  /\  dom  g  =  B )  /\  ran  g  C_  A )  /\  Fun  `' g ) ) )
37 dff1o4 6145 . . 3  |-  ( H : A -1-1-onto-> B  <->  ( H  Fn  A  /\  `' H  Fn  B ) )
38 df-fn 5891 . . . 4  |-  ( H  Fn  A  <->  ( Fun  H  /\  dom  H  =  A ) )
39 df-fn 5891 . . . 4  |-  ( `' H  Fn  B  <->  ( Fun  `' H  /\  dom  `' H  =  B )
)
4038, 39anbi12i 733 . . 3  |-  ( ( H  Fn  A  /\  `' H  Fn  B
)  <->  ( ( Fun 
H  /\  dom  H  =  A )  /\  ( Fun  `' H  /\  dom  `' H  =  B )
) )
4137, 40bitri 264 . 2  |-  ( H : A -1-1-onto-> B  <->  ( ( Fun 
H  /\  dom  H  =  A )  /\  ( Fun  `' H  /\  dom  `' H  =  B )
) )
4221, 36, 413imtr4i 281 1  |-  ( ( f : A -1-1-> B  /\  g : B -1-1-> A
)  ->  H : A
-1-1-onto-> B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608   _Vcvv 3200    \ cdif 3571    u. cun 3572    C_ wss 3574   U.cuni 4436   `'ccnv 5113   dom cdm 5114   ran crn 5115    |` cres 5116   "cima 5117   Fun wfun 5882    Fn wfn 5883   -->wf 5884   -1-1->wf1 5885   -1-1-onto->wf1o 5887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895
This theorem is referenced by:  sbthlem10  8079
  Copyright terms: Public domain W3C validator