| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > setcval | Structured version Visualization version Unicode version | ||
| Description: Value of the category of sets (in a universe). (Contributed by Mario Carneiro, 3-Jan-2017.) |
| Ref | Expression |
|---|---|
| setcval.c |
|
| setcval.u |
|
| setcval.h |
|
| setcval.o |
|
| Ref | Expression |
|---|---|
| setcval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setcval.c |
. 2
| |
| 2 | df-setc 16726 |
. . . 4
| |
| 3 | 2 | a1i 11 |
. . 3
|
| 4 | simpr 477 |
. . . . 5
| |
| 5 | 4 | opeq2d 4409 |
. . . 4
|
| 6 | eqidd 2623 |
. . . . . . 7
| |
| 7 | 4, 4, 6 | mpt2eq123dv 6717 |
. . . . . 6
|
| 8 | setcval.h |
. . . . . . 7
| |
| 9 | 8 | adantr 481 |
. . . . . 6
|
| 10 | 7, 9 | eqtr4d 2659 |
. . . . 5
|
| 11 | 10 | opeq2d 4409 |
. . . 4
|
| 12 | 4 | sqxpeqd 5141 |
. . . . . . 7
|
| 13 | eqidd 2623 |
. . . . . . 7
| |
| 14 | 12, 4, 13 | mpt2eq123dv 6717 |
. . . . . 6
|
| 15 | setcval.o |
. . . . . . 7
| |
| 16 | 15 | adantr 481 |
. . . . . 6
|
| 17 | 14, 16 | eqtr4d 2659 |
. . . . 5
|
| 18 | 17 | opeq2d 4409 |
. . . 4
|
| 19 | 5, 11, 18 | tpeq123d 4283 |
. . 3
|
| 20 | setcval.u |
. . . 4
| |
| 21 | elex 3212 |
. . . 4
| |
| 22 | 20, 21 | syl 17 |
. . 3
|
| 23 | tpex 6957 |
. . . 4
| |
| 24 | 23 | a1i 11 |
. . 3
|
| 25 | 3, 19, 22, 24 | fvmptd 6288 |
. 2
|
| 26 | 1, 25 | syl5eq 2668 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-oprab 6654 df-mpt2 6655 df-setc 16726 |
| This theorem is referenced by: setcbas 16728 setchomfval 16729 setccofval 16732 |
| Copyright terms: Public domain | W3C validator |