| Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > setrec1lem4 | Structured version Visualization version Unicode version | ||
| Description: Lemma for setrec1 42438. If
In the proof of setrec1 42438, the following is substituted for this
theorem's |
| Ref | Expression |
|---|---|
| setrec1lem4.1 |
|
| setrec1lem4.2 |
|
| setrec1lem4.3 |
|
| setrec1lem4.4 |
|
| setrec1lem4.5 |
|
| Ref | Expression |
|---|---|
| setrec1lem4 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setrec1lem4.1 |
. . 3
| |
| 2 | id 22 |
. . . . . . . 8
| |
| 3 | ssun1 3776 |
. . . . . . . 8
| |
| 4 | 2, 3 | syl6ss 3615 |
. . . . . . 7
|
| 5 | 4 | imim1i 63 |
. . . . . 6
|
| 6 | 5 | alimi 1739 |
. . . . 5
|
| 7 | setrec1lem4.5 |
. . . . . . . 8
| |
| 8 | setrec1lem4.2 |
. . . . . . . . 9
| |
| 9 | 8, 7 | setrec1lem1 42434 |
. . . . . . . 8
|
| 10 | 7, 9 | mpbid 222 |
. . . . . . 7
|
| 11 | sp 2053 |
. . . . . . 7
| |
| 12 | 10, 11 | syl 17 |
. . . . . 6
|
| 13 | setrec1lem4.4 |
. . . . . . . . 9
| |
| 14 | sstr2 3610 |
. . . . . . . . 9
| |
| 15 | 13, 14 | syl 17 |
. . . . . . . 8
|
| 16 | 12, 15 | syld 47 |
. . . . . . 7
|
| 17 | setrec1lem4.3 |
. . . . . . . . 9
| |
| 18 | sseq1 3626 |
. . . . . . . . . 10
| |
| 19 | sseq1 3626 |
. . . . . . . . . . 11
| |
| 20 | fveq2 6191 |
. . . . . . . . . . . 12
| |
| 21 | 20 | sseq1d 3632 |
. . . . . . . . . . 11
|
| 22 | 19, 21 | imbi12d 334 |
. . . . . . . . . 10
|
| 23 | 18, 22 | imbi12d 334 |
. . . . . . . . 9
|
| 24 | 17, 23 | spcdvw 42426 |
. . . . . . . 8
|
| 25 | 13, 24 | mpid 44 |
. . . . . . 7
|
| 26 | 16, 25 | mpdd 43 |
. . . . . 6
|
| 27 | 12, 26 | jcad 555 |
. . . . 5
|
| 28 | 6, 27 | syl5 34 |
. . . 4
|
| 29 | unss 3787 |
. . . 4
| |
| 30 | 28, 29 | syl6ib 241 |
. . 3
|
| 31 | 1, 30 | alrimi 2082 |
. 2
|
| 32 | fvex 6201 |
. . . 4
| |
| 33 | unexg 6959 |
. . . 4
| |
| 34 | 7, 32, 33 | sylancl 694 |
. . 3
|
| 35 | 8, 34 | setrec1lem1 42434 |
. 2
|
| 36 | 31, 35 | mpbird 247 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 |
| This theorem is referenced by: setrec1 42438 |
| Copyright terms: Public domain | W3C validator |