Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sgnsv Structured version   Visualization version   Unicode version

Theorem sgnsv 29727
Description: The sign mapping. (Contributed by Thierry Arnoux, 9-Sep-2018.)
Hypotheses
Ref Expression
sgnsval.b  |-  B  =  ( Base `  R
)
sgnsval.0  |-  .0.  =  ( 0g `  R )
sgnsval.l  |-  .<  =  ( lt `  R )
sgnsval.s  |-  S  =  (sgns `  R )
Assertion
Ref Expression
sgnsv  |-  ( R  e.  V  ->  S  =  ( x  e.  B  |->  if ( x  =  .0.  ,  0 ,  if (  .0. 
.<  x ,  1 , 
-u 1 ) ) ) )
Distinct variable groups:    x,  .0.    x, 
.<    x, B    x, R    x, V
Allowed substitution hint:    S( x)

Proof of Theorem sgnsv
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 sgnsval.s . 2  |-  S  =  (sgns `  R )
2 elex 3212 . . 3  |-  ( R  e.  V  ->  R  e.  _V )
3 fveq2 6191 . . . . . 6  |-  ( r  =  R  ->  ( Base `  r )  =  ( Base `  R
) )
4 sgnsval.b . . . . . 6  |-  B  =  ( Base `  R
)
53, 4syl6eqr 2674 . . . . 5  |-  ( r  =  R  ->  ( Base `  r )  =  B )
6 fveq2 6191 . . . . . . . . 9  |-  ( r  =  R  ->  ( 0g `  r )  =  ( 0g `  R
) )
7 sgnsval.0 . . . . . . . . 9  |-  .0.  =  ( 0g `  R )
86, 7syl6eqr 2674 . . . . . . . 8  |-  ( r  =  R  ->  ( 0g `  r )  =  .0.  )
98adantr 481 . . . . . . 7  |-  ( ( r  =  R  /\  x  e.  ( Base `  r ) )  -> 
( 0g `  r
)  =  .0.  )
109eqeq2d 2632 . . . . . 6  |-  ( ( r  =  R  /\  x  e.  ( Base `  r ) )  -> 
( x  =  ( 0g `  r )  <-> 
x  =  .0.  )
)
11 fveq2 6191 . . . . . . . . . 10  |-  ( r  =  R  ->  ( lt `  r )  =  ( lt `  R
) )
12 sgnsval.l . . . . . . . . . 10  |-  .<  =  ( lt `  R )
1311, 12syl6eqr 2674 . . . . . . . . 9  |-  ( r  =  R  ->  ( lt `  r )  = 
.<  )
1413adantr 481 . . . . . . . 8  |-  ( ( r  =  R  /\  x  e.  ( Base `  r ) )  -> 
( lt `  r
)  =  .<  )
15 eqidd 2623 . . . . . . . 8  |-  ( ( r  =  R  /\  x  e.  ( Base `  r ) )  ->  x  =  x )
169, 14, 15breq123d 4667 . . . . . . 7  |-  ( ( r  =  R  /\  x  e.  ( Base `  r ) )  -> 
( ( 0g `  r ) ( lt
`  r ) x  <-> 
.0.  .<  x ) )
1716ifbid 4108 . . . . . 6  |-  ( ( r  =  R  /\  x  e.  ( Base `  r ) )  ->  if ( ( 0g `  r ) ( lt
`  r ) x ,  1 ,  -u
1 )  =  if (  .0.  .<  x ,  1 ,  -u
1 ) )
1810, 17ifbieq2d 4111 . . . . 5  |-  ( ( r  =  R  /\  x  e.  ( Base `  r ) )  ->  if ( x  =  ( 0g `  r ) ,  0 ,  if ( ( 0g `  r ) ( lt
`  r ) x ,  1 ,  -u
1 ) )  =  if ( x  =  .0.  ,  0 ,  if (  .0.  .<  x ,  1 ,  -u
1 ) ) )
195, 18mpteq12dva 4732 . . . 4  |-  ( r  =  R  ->  (
x  e.  ( Base `  r )  |->  if ( x  =  ( 0g
`  r ) ,  0 ,  if ( ( 0g `  r
) ( lt `  r ) x ,  1 ,  -u 1
) ) )  =  ( x  e.  B  |->  if ( x  =  .0.  ,  0 ,  if (  .0.  .<  x ,  1 ,  -u
1 ) ) ) )
20 df-sgns 29726 . . . 4  |- sgns  =  (
r  e.  _V  |->  ( x  e.  ( Base `  r )  |->  if ( x  =  ( 0g
`  r ) ,  0 ,  if ( ( 0g `  r
) ( lt `  r ) x ,  1 ,  -u 1
) ) ) )
21 fvex 6201 . . . . 5  |-  ( Base `  r )  e.  _V
2221mptex 6486 . . . 4  |-  ( x  e.  ( Base `  r
)  |->  if ( x  =  ( 0g `  r ) ,  0 ,  if ( ( 0g `  r ) ( lt `  r
) x ,  1 ,  -u 1 ) ) )  e.  _V
2319, 20, 22fvmpt3i 6287 . . 3  |-  ( R  e.  _V  ->  (sgns `  R )  =  ( x  e.  B  |->  if ( x  =  .0. 
,  0 ,  if (  .0.  .<  x , 
1 ,  -u 1
) ) ) )
242, 23syl 17 . 2  |-  ( R  e.  V  ->  (sgns `  R )  =  ( x  e.  B  |->  if ( x  =  .0. 
,  0 ,  if (  .0.  .<  x , 
1 ,  -u 1
) ) ) )
251, 24syl5eq 2668 1  |-  ( R  e.  V  ->  S  =  ( x  e.  B  |->  if ( x  =  .0.  ,  0 ,  if (  .0. 
.<  x ,  1 , 
-u 1 ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200   ifcif 4086   class class class wbr 4653    |-> cmpt 4729   ` cfv 5888   0cc0 9936   1c1 9937   -ucneg 10267   Basecbs 15857   0gc0g 16100   ltcplt 16941  sgnscsgns 29725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-sgns 29726
This theorem is referenced by:  sgnsval  29728  sgnsf  29729
  Copyright terms: Public domain W3C validator