Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sgnsval Structured version   Visualization version   Unicode version

Theorem sgnsval 29728
Description: The sign value. (Contributed by Thierry Arnoux, 9-Sep-2018.)
Hypotheses
Ref Expression
sgnsval.b  |-  B  =  ( Base `  R
)
sgnsval.0  |-  .0.  =  ( 0g `  R )
sgnsval.l  |-  .<  =  ( lt `  R )
sgnsval.s  |-  S  =  (sgns `  R )
Assertion
Ref Expression
sgnsval  |-  ( ( R  e.  V  /\  X  e.  B )  ->  ( S `  X
)  =  if ( X  =  .0.  , 
0 ,  if (  .0.  .<  X , 
1 ,  -u 1
) ) )

Proof of Theorem sgnsval
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 sgnsval.b . . . 4  |-  B  =  ( Base `  R
)
2 sgnsval.0 . . . 4  |-  .0.  =  ( 0g `  R )
3 sgnsval.l . . . 4  |-  .<  =  ( lt `  R )
4 sgnsval.s . . . 4  |-  S  =  (sgns `  R )
51, 2, 3, 4sgnsv 29727 . . 3  |-  ( R  e.  V  ->  S  =  ( x  e.  B  |->  if ( x  =  .0.  ,  0 ,  if (  .0. 
.<  x ,  1 , 
-u 1 ) ) ) )
65adantr 481 . 2  |-  ( ( R  e.  V  /\  X  e.  B )  ->  S  =  ( x  e.  B  |->  if ( x  =  .0.  , 
0 ,  if (  .0.  .<  x , 
1 ,  -u 1
) ) ) )
7 eqeq1 2626 . . . 4  |-  ( x  =  X  ->  (
x  =  .0.  <->  X  =  .0.  ) )
8 breq2 4657 . . . . 5  |-  ( x  =  X  ->  (  .0.  .<  x  <->  .0.  .<  X ) )
98ifbid 4108 . . . 4  |-  ( x  =  X  ->  if (  .0.  .<  x , 
1 ,  -u 1
)  =  if (  .0.  .<  X , 
1 ,  -u 1
) )
107, 9ifbieq2d 4111 . . 3  |-  ( x  =  X  ->  if ( x  =  .0.  ,  0 ,  if (  .0.  .<  x , 
1 ,  -u 1
) )  =  if ( X  =  .0. 
,  0 ,  if (  .0.  .<  X , 
1 ,  -u 1
) ) )
1110adantl 482 . 2  |-  ( ( ( R  e.  V  /\  X  e.  B
)  /\  x  =  X )  ->  if ( x  =  .0.  ,  0 ,  if (  .0.  .<  x , 
1 ,  -u 1
) )  =  if ( X  =  .0. 
,  0 ,  if (  .0.  .<  X , 
1 ,  -u 1
) ) )
12 simpr 477 . 2  |-  ( ( R  e.  V  /\  X  e.  B )  ->  X  e.  B )
13 c0ex 10034 . . . 4  |-  0  e.  _V
1413a1i 11 . . 3  |-  ( ( ( R  e.  V  /\  X  e.  B
)  /\  X  =  .0.  )  ->  0  e. 
_V )
15 1ex 10035 . . . . 5  |-  1  e.  _V
1615a1i 11 . . . 4  |-  ( ( ( ( R  e.  V  /\  X  e.  B )  /\  -.  X  =  .0.  )  /\  .0.  .<  X )  ->  1  e.  _V )
17 negex 10279 . . . . 5  |-  -u 1  e.  _V
1817a1i 11 . . . 4  |-  ( ( ( ( R  e.  V  /\  X  e.  B )  /\  -.  X  =  .0.  )  /\  -.  .0.  .<  X )  ->  -u 1  e.  _V )
1916, 18ifclda 4120 . . 3  |-  ( ( ( R  e.  V  /\  X  e.  B
)  /\  -.  X  =  .0.  )  ->  if (  .0.  .<  X , 
1 ,  -u 1
)  e.  _V )
2014, 19ifclda 4120 . 2  |-  ( ( R  e.  V  /\  X  e.  B )  ->  if ( X  =  .0.  ,  0 ,  if (  .0.  .<  X ,  1 ,  -u
1 ) )  e. 
_V )
216, 11, 12, 20fvmptd 6288 1  |-  ( ( R  e.  V  /\  X  e.  B )  ->  ( S `  X
)  =  if ( X  =  .0.  , 
0 ,  if (  .0.  .<  X , 
1 ,  -u 1
) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200   ifcif 4086   class class class wbr 4653    |-> cmpt 4729   ` cfv 5888   0cc0 9936   1c1 9937   -ucneg 10267   Basecbs 15857   0gc0g 16100   ltcplt 16941  sgnscsgns 29725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-mulcl 9998  ax-i2m1 10004
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-neg 10269  df-sgns 29726
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator