Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sgrp2sgrp Structured version   Visualization version   Unicode version

Theorem sgrp2sgrp 41864
Description: Equivalence of the two definitions of a semigroup. (Contributed by AV, 16-Jan-2020.)
Assertion
Ref Expression
sgrp2sgrp  |-  ( M  e. SGrpALT 
<->  M  e. SGrp )

Proof of Theorem sgrp2sgrp
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mgm2mgm 41863 . . . 4  |-  ( M  e. MgmALT 
<->  M  e. Mgm )
21anbi1i 731 . . 3  |-  ( ( M  e. MgmALT  /\  ( +g  `  M ) assLaw  ( Base `  M ) )  <-> 
( M  e. Mgm  /\  ( +g  `  M ) assLaw 
( Base `  M )
) )
3 fvex 6201 . . . . . 6  |-  ( +g  `  M )  e.  _V
4 fvex 6201 . . . . . 6  |-  ( Base `  M )  e.  _V
53, 4pm3.2i 471 . . . . 5  |-  ( ( +g  `  M )  e.  _V  /\  ( Base `  M )  e. 
_V )
6 isasslaw 41828 . . . . 5  |-  ( ( ( +g  `  M
)  e.  _V  /\  ( Base `  M )  e.  _V )  ->  (
( +g  `  M ) assLaw 
( Base `  M )  <->  A. x  e.  ( Base `  M ) A. y  e.  ( Base `  M
) A. z  e.  ( Base `  M
) ( ( x ( +g  `  M
) y ) ( +g  `  M ) z )  =  ( x ( +g  `  M
) ( y ( +g  `  M ) z ) ) ) )
75, 6mp1i 13 . . . 4  |-  ( M  e. Mgm  ->  ( ( +g  `  M ) assLaw  ( Base `  M )  <->  A. x  e.  ( Base `  M
) A. y  e.  ( Base `  M
) A. z  e.  ( Base `  M
) ( ( x ( +g  `  M
) y ) ( +g  `  M ) z )  =  ( x ( +g  `  M
) ( y ( +g  `  M ) z ) ) ) )
87pm5.32i 669 . . 3  |-  ( ( M  e. Mgm  /\  ( +g  `  M ) assLaw  ( Base `  M ) )  <-> 
( M  e. Mgm  /\  A. x  e.  ( Base `  M ) A. y  e.  ( Base `  M
) A. z  e.  ( Base `  M
) ( ( x ( +g  `  M
) y ) ( +g  `  M ) z )  =  ( x ( +g  `  M
) ( y ( +g  `  M ) z ) ) ) )
92, 8bitri 264 . 2  |-  ( ( M  e. MgmALT  /\  ( +g  `  M ) assLaw  ( Base `  M ) )  <-> 
( M  e. Mgm  /\  A. x  e.  ( Base `  M ) A. y  e.  ( Base `  M
) A. z  e.  ( Base `  M
) ( ( x ( +g  `  M
) y ) ( +g  `  M ) z )  =  ( x ( +g  `  M
) ( y ( +g  `  M ) z ) ) ) )
10 eqid 2622 . . 3  |-  ( Base `  M )  =  (
Base `  M )
11 eqid 2622 . . 3  |-  ( +g  `  M )  =  ( +g  `  M )
1210, 11issgrpALT 41861 . 2  |-  ( M  e. SGrpALT 
<->  ( M  e. MgmALT  /\  ( +g  `  M ) assLaw  ( Base `  M ) ) )
1310, 11issgrp 17285 . 2  |-  ( M  e. SGrp 
<->  ( M  e. Mgm  /\  A. x  e.  ( Base `  M ) A. y  e.  ( Base `  M
) A. z  e.  ( Base `  M
) ( ( x ( +g  `  M
) y ) ( +g  `  M ) z )  =  ( x ( +g  `  M
) ( y ( +g  `  M ) z ) ) ) )
149, 12, 133bitr4i 292 1  |-  ( M  e. SGrpALT 
<->  M  e. SGrp )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857   +g cplusg 15941  Mgmcmgm 17240  SGrpcsgrp 17283   assLaw casslaw 41820  MgmALTcmgm2 41851  SGrpALTcsgrp2 41853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-iota 5851  df-fv 5896  df-ov 6653  df-mgm 17242  df-sgrp 17284  df-cllaw 41822  df-asslaw 41824  df-mgm2 41855  df-sgrp2 41857
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator