Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sibfima Structured version   Visualization version   Unicode version

Theorem sibfima 30400
Description: Any preimage of a singleton by a simple function is measurable. (Contributed by Thierry Arnoux, 19-Feb-2018.)
Hypotheses
Ref Expression
sitgval.b  |-  B  =  ( Base `  W
)
sitgval.j  |-  J  =  ( TopOpen `  W )
sitgval.s  |-  S  =  (sigaGen `  J )
sitgval.0  |-  .0.  =  ( 0g `  W )
sitgval.x  |-  .x.  =  ( .s `  W )
sitgval.h  |-  H  =  (RRHom `  (Scalar `  W
) )
sitgval.1  |-  ( ph  ->  W  e.  V )
sitgval.2  |-  ( ph  ->  M  e.  U. ran measures )
sibfmbl.1  |-  ( ph  ->  F  e.  dom  ( Wsitg M ) )
Assertion
Ref Expression
sibfima  |-  ( (
ph  /\  A  e.  ( ran  F  \  {  .0.  } ) )  -> 
( M `  ( `' F " { A } ) )  e.  ( 0 [,) +oo ) )

Proof of Theorem sibfima
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 sibfmbl.1 . . . 4  |-  ( ph  ->  F  e.  dom  ( Wsitg M ) )
2 sitgval.b . . . . 5  |-  B  =  ( Base `  W
)
3 sitgval.j . . . . 5  |-  J  =  ( TopOpen `  W )
4 sitgval.s . . . . 5  |-  S  =  (sigaGen `  J )
5 sitgval.0 . . . . 5  |-  .0.  =  ( 0g `  W )
6 sitgval.x . . . . 5  |-  .x.  =  ( .s `  W )
7 sitgval.h . . . . 5  |-  H  =  (RRHom `  (Scalar `  W
) )
8 sitgval.1 . . . . 5  |-  ( ph  ->  W  e.  V )
9 sitgval.2 . . . . 5  |-  ( ph  ->  M  e.  U. ran measures )
102, 3, 4, 5, 6, 7, 8, 9issibf 30395 . . . 4  |-  ( ph  ->  ( F  e.  dom  ( Wsitg M )  <->  ( F  e.  ( dom  MMblFnM S
)  /\  ran  F  e. 
Fin  /\  A. x  e.  ( ran  F  \  {  .0.  } ) ( M `  ( `' F " { x } ) )  e.  ( 0 [,) +oo ) ) ) )
111, 10mpbid 222 . . 3  |-  ( ph  ->  ( F  e.  ( dom  MMblFnM S )  /\  ran  F  e.  Fin  /\  A. x  e.  ( ran 
F  \  {  .0.  } ) ( M `  ( `' F " { x } ) )  e.  ( 0 [,) +oo ) ) )
1211simp3d 1075 . 2  |-  ( ph  ->  A. x  e.  ( ran  F  \  {  .0.  } ) ( M `
 ( `' F " { x } ) )  e.  ( 0 [,) +oo ) )
13 sneq 4187 . . . . . 6  |-  ( x  =  A  ->  { x }  =  { A } )
1413imaeq2d 5466 . . . . 5  |-  ( x  =  A  ->  ( `' F " { x } )  =  ( `' F " { A } ) )
1514fveq2d 6195 . . . 4  |-  ( x  =  A  ->  ( M `  ( `' F " { x }
) )  =  ( M `  ( `' F " { A } ) ) )
1615eleq1d 2686 . . 3  |-  ( x  =  A  ->  (
( M `  ( `' F " { x } ) )  e.  ( 0 [,) +oo ) 
<->  ( M `  ( `' F " { A } ) )  e.  ( 0 [,) +oo ) ) )
1716rspcv 3305 . 2  |-  ( A  e.  ( ran  F  \  {  .0.  } )  ->  ( A. x  e.  ( ran  F  \  {  .0.  } ) ( M `  ( `' F " { x } ) )  e.  ( 0 [,) +oo )  ->  ( M `  ( `' F " { A } ) )  e.  ( 0 [,) +oo ) ) )
1812, 17mpan9 486 1  |-  ( (
ph  /\  A  e.  ( ran  F  \  {  .0.  } ) )  -> 
( M `  ( `' F " { A } ) )  e.  ( 0 [,) +oo ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912    \ cdif 3571   {csn 4177   U.cuni 4436   `'ccnv 5113   dom cdm 5114   ran crn 5115   "cima 5117   ` cfv 5888  (class class class)co 6650   Fincfn 7955   0cc0 9936   +oocpnf 10071   [,)cico 12177   Basecbs 15857  Scalarcsca 15944   .scvsca 15945   TopOpenctopn 16082   0gc0g 16100  RRHomcrrh 30037  sigaGencsigagen 30201  measurescmeas 30258  MblFnMcmbfm 30312  sitgcsitg 30391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-sitg 30392
This theorem is referenced by:  sibfinima  30401  sitgfval  30403  sitgclg  30404
  Copyright terms: Public domain W3C validator