Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  slmdcmn Structured version   Visualization version   Unicode version

Theorem slmdcmn 29758
Description: A semimodule is a commutative monoid. (Contributed by Thierry Arnoux, 1-Apr-2018.)
Assertion
Ref Expression
slmdcmn  |-  ( W  e. SLMod  ->  W  e. CMnd )

Proof of Theorem slmdcmn
Dummy variables  x  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . 3  |-  ( Base `  W )  =  (
Base `  W )
2 eqid 2622 . . 3  |-  ( +g  `  W )  =  ( +g  `  W )
3 eqid 2622 . . 3  |-  ( .s
`  W )  =  ( .s `  W
)
4 eqid 2622 . . 3  |-  ( 0g
`  W )  =  ( 0g `  W
)
5 eqid 2622 . . 3  |-  (Scalar `  W )  =  (Scalar `  W )
6 eqid 2622 . . 3  |-  ( Base `  (Scalar `  W )
)  =  ( Base `  (Scalar `  W )
)
7 eqid 2622 . . 3  |-  ( +g  `  (Scalar `  W )
)  =  ( +g  `  (Scalar `  W )
)
8 eqid 2622 . . 3  |-  ( .r
`  (Scalar `  W )
)  =  ( .r
`  (Scalar `  W )
)
9 eqid 2622 . . 3  |-  ( 1r
`  (Scalar `  W )
)  =  ( 1r
`  (Scalar `  W )
)
10 eqid 2622 . . 3  |-  ( 0g
`  (Scalar `  W )
)  =  ( 0g
`  (Scalar `  W )
)
111, 2, 3, 4, 5, 6, 7, 8, 9, 10isslmd 29755 . 2  |-  ( W  e. SLMod 
<->  ( W  e. CMnd  /\  (Scalar `  W )  e. SRing  /\  A. w  e.  (
Base `  (Scalar `  W
) ) A. z  e.  ( Base `  (Scalar `  W ) ) A. x  e.  ( Base `  W ) A. y  e.  ( Base `  W
) ( ( ( z ( .s `  W ) y )  e.  ( Base `  W
)  /\  ( z
( .s `  W
) ( y ( +g  `  W ) x ) )  =  ( ( z ( .s `  W ) y ) ( +g  `  W ) ( z ( .s `  W
) x ) )  /\  ( ( w ( +g  `  (Scalar `  W ) ) z ) ( .s `  W ) y )  =  ( ( w ( .s `  W
) y ) ( +g  `  W ) ( z ( .s
`  W ) y ) ) )  /\  ( ( ( w ( .r `  (Scalar `  W ) ) z ) ( .s `  W ) y )  =  ( w ( .s `  W ) ( z ( .s
`  W ) y ) )  /\  (
( 1r `  (Scalar `  W ) ) ( .s `  W ) y )  =  y  /\  ( ( 0g
`  (Scalar `  W )
) ( .s `  W ) y )  =  ( 0g `  W ) ) ) ) )
1211simp1bi 1076 1  |-  ( W  e. SLMod  ->  W  e. CMnd )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   ` cfv 5888  (class class class)co 6650   Basecbs 15857   +g cplusg 15941   .rcmulr 15942  Scalarcsca 15944   .scvsca 15945   0gc0g 16100  CMndccmn 18193   1rcur 18501  SRingcsrg 18505  SLModcslmd 29753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-ov 6653  df-slmd 29754
This theorem is referenced by:  slmdmnd  29759  gsumvsca1  29782  gsumvsca2  29783
  Copyright terms: Public domain W3C validator