Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmodslmd Structured version   Visualization version   Unicode version

Theorem lmodslmd 29757
Description: Left semimodules generalize the notion of left modules. (Contributed by Thierry Arnoux, 1-Apr-2018.)
Assertion
Ref Expression
lmodslmd  |-  ( W  e.  LMod  ->  W  e. SLMod
)

Proof of Theorem lmodslmd
Dummy variables  r 
q  w  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmodcmn 18911 . 2  |-  ( W  e.  LMod  ->  W  e. CMnd
)
2 eqid 2622 . . . 4  |-  (Scalar `  W )  =  (Scalar `  W )
32lmodring 18871 . . 3  |-  ( W  e.  LMod  ->  (Scalar `  W )  e.  Ring )
4 ringsrg 18589 . . 3  |-  ( (Scalar `  W )  e.  Ring  -> 
(Scalar `  W )  e. SRing )
53, 4syl 17 . 2  |-  ( W  e.  LMod  ->  (Scalar `  W )  e. SRing )
6 eqid 2622 . . . . . . . . . . . . . 14  |-  ( Base `  W )  =  (
Base `  W )
7 eqid 2622 . . . . . . . . . . . . . 14  |-  ( +g  `  W )  =  ( +g  `  W )
8 eqid 2622 . . . . . . . . . . . . . 14  |-  ( .s
`  W )  =  ( .s `  W
)
9 eqid 2622 . . . . . . . . . . . . . 14  |-  ( Base `  (Scalar `  W )
)  =  ( Base `  (Scalar `  W )
)
10 eqid 2622 . . . . . . . . . . . . . 14  |-  ( +g  `  (Scalar `  W )
)  =  ( +g  `  (Scalar `  W )
)
11 eqid 2622 . . . . . . . . . . . . . 14  |-  ( .r
`  (Scalar `  W )
)  =  ( .r
`  (Scalar `  W )
)
12 eqid 2622 . . . . . . . . . . . . . 14  |-  ( 1r
`  (Scalar `  W )
)  =  ( 1r
`  (Scalar `  W )
)
136, 7, 8, 2, 9, 10, 11, 12islmod 18867 . . . . . . . . . . . . 13  |-  ( W  e.  LMod  <->  ( W  e. 
Grp  /\  (Scalar `  W
)  e.  Ring  /\  A. q  e.  ( Base `  (Scalar `  W )
) A. r  e.  ( Base `  (Scalar `  W ) ) A. x  e.  ( Base `  W ) A. w  e.  ( Base `  W
) ( ( ( r ( .s `  W ) w )  e.  ( Base `  W
)  /\  ( r
( .s `  W
) ( w ( +g  `  W ) x ) )  =  ( ( r ( .s `  W ) w ) ( +g  `  W ) ( r ( .s `  W
) x ) )  /\  ( ( q ( +g  `  (Scalar `  W ) ) r ) ( .s `  W ) w )  =  ( ( q ( .s `  W
) w ) ( +g  `  W ) ( r ( .s
`  W ) w ) ) )  /\  ( ( ( q ( .r `  (Scalar `  W ) ) r ) ( .s `  W ) w )  =  ( q ( .s `  W ) ( r ( .s
`  W ) w ) )  /\  (
( 1r `  (Scalar `  W ) ) ( .s `  W ) w )  =  w ) ) ) )
1413simp3bi 1078 . . . . . . . . . . . 12  |-  ( W  e.  LMod  ->  A. q  e.  ( Base `  (Scalar `  W ) ) A. r  e.  ( Base `  (Scalar `  W )
) A. x  e.  ( Base `  W
) A. w  e.  ( Base `  W
) ( ( ( r ( .s `  W ) w )  e.  ( Base `  W
)  /\  ( r
( .s `  W
) ( w ( +g  `  W ) x ) )  =  ( ( r ( .s `  W ) w ) ( +g  `  W ) ( r ( .s `  W
) x ) )  /\  ( ( q ( +g  `  (Scalar `  W ) ) r ) ( .s `  W ) w )  =  ( ( q ( .s `  W
) w ) ( +g  `  W ) ( r ( .s
`  W ) w ) ) )  /\  ( ( ( q ( .r `  (Scalar `  W ) ) r ) ( .s `  W ) w )  =  ( q ( .s `  W ) ( r ( .s
`  W ) w ) )  /\  (
( 1r `  (Scalar `  W ) ) ( .s `  W ) w )  =  w ) ) )
1514r19.21bi 2932 . . . . . . . . . . 11  |-  ( ( W  e.  LMod  /\  q  e.  ( Base `  (Scalar `  W ) ) )  ->  A. r  e.  (
Base `  (Scalar `  W
) ) A. x  e.  ( Base `  W
) A. w  e.  ( Base `  W
) ( ( ( r ( .s `  W ) w )  e.  ( Base `  W
)  /\  ( r
( .s `  W
) ( w ( +g  `  W ) x ) )  =  ( ( r ( .s `  W ) w ) ( +g  `  W ) ( r ( .s `  W
) x ) )  /\  ( ( q ( +g  `  (Scalar `  W ) ) r ) ( .s `  W ) w )  =  ( ( q ( .s `  W
) w ) ( +g  `  W ) ( r ( .s
`  W ) w ) ) )  /\  ( ( ( q ( .r `  (Scalar `  W ) ) r ) ( .s `  W ) w )  =  ( q ( .s `  W ) ( r ( .s
`  W ) w ) )  /\  (
( 1r `  (Scalar `  W ) ) ( .s `  W ) w )  =  w ) ) )
1615r19.21bi 2932 . . . . . . . . . 10  |-  ( ( ( W  e.  LMod  /\  q  e.  ( Base `  (Scalar `  W )
) )  /\  r  e.  ( Base `  (Scalar `  W ) ) )  ->  A. x  e.  (
Base `  W ) A. w  e.  ( Base `  W ) ( ( ( r ( .s `  W ) w )  e.  (
Base `  W )  /\  ( r ( .s
`  W ) ( w ( +g  `  W
) x ) )  =  ( ( r ( .s `  W
) w ) ( +g  `  W ) ( r ( .s
`  W ) x ) )  /\  (
( q ( +g  `  (Scalar `  W )
) r ) ( .s `  W ) w )  =  ( ( q ( .s
`  W ) w ) ( +g  `  W
) ( r ( .s `  W ) w ) ) )  /\  ( ( ( q ( .r `  (Scalar `  W ) ) r ) ( .s
`  W ) w )  =  ( q ( .s `  W
) ( r ( .s `  W ) w ) )  /\  ( ( 1r `  (Scalar `  W ) ) ( .s `  W
) w )  =  w ) ) )
1716r19.21bi 2932 . . . . . . . . 9  |-  ( ( ( ( W  e. 
LMod  /\  q  e.  (
Base `  (Scalar `  W
) ) )  /\  r  e.  ( Base `  (Scalar `  W )
) )  /\  x  e.  ( Base `  W
) )  ->  A. w  e.  ( Base `  W
) ( ( ( r ( .s `  W ) w )  e.  ( Base `  W
)  /\  ( r
( .s `  W
) ( w ( +g  `  W ) x ) )  =  ( ( r ( .s `  W ) w ) ( +g  `  W ) ( r ( .s `  W
) x ) )  /\  ( ( q ( +g  `  (Scalar `  W ) ) r ) ( .s `  W ) w )  =  ( ( q ( .s `  W
) w ) ( +g  `  W ) ( r ( .s
`  W ) w ) ) )  /\  ( ( ( q ( .r `  (Scalar `  W ) ) r ) ( .s `  W ) w )  =  ( q ( .s `  W ) ( r ( .s
`  W ) w ) )  /\  (
( 1r `  (Scalar `  W ) ) ( .s `  W ) w )  =  w ) ) )
1817r19.21bi 2932 . . . . . . . 8  |-  ( ( ( ( ( W  e.  LMod  /\  q  e.  ( Base `  (Scalar `  W ) ) )  /\  r  e.  (
Base `  (Scalar `  W
) ) )  /\  x  e.  ( Base `  W ) )  /\  w  e.  ( Base `  W ) )  -> 
( ( ( r ( .s `  W
) w )  e.  ( Base `  W
)  /\  ( r
( .s `  W
) ( w ( +g  `  W ) x ) )  =  ( ( r ( .s `  W ) w ) ( +g  `  W ) ( r ( .s `  W
) x ) )  /\  ( ( q ( +g  `  (Scalar `  W ) ) r ) ( .s `  W ) w )  =  ( ( q ( .s `  W
) w ) ( +g  `  W ) ( r ( .s
`  W ) w ) ) )  /\  ( ( ( q ( .r `  (Scalar `  W ) ) r ) ( .s `  W ) w )  =  ( q ( .s `  W ) ( r ( .s
`  W ) w ) )  /\  (
( 1r `  (Scalar `  W ) ) ( .s `  W ) w )  =  w ) ) )
1918simpld 475 . . . . . . 7  |-  ( ( ( ( ( W  e.  LMod  /\  q  e.  ( Base `  (Scalar `  W ) ) )  /\  r  e.  (
Base `  (Scalar `  W
) ) )  /\  x  e.  ( Base `  W ) )  /\  w  e.  ( Base `  W ) )  -> 
( ( r ( .s `  W ) w )  e.  (
Base `  W )  /\  ( r ( .s
`  W ) ( w ( +g  `  W
) x ) )  =  ( ( r ( .s `  W
) w ) ( +g  `  W ) ( r ( .s
`  W ) x ) )  /\  (
( q ( +g  `  (Scalar `  W )
) r ) ( .s `  W ) w )  =  ( ( q ( .s
`  W ) w ) ( +g  `  W
) ( r ( .s `  W ) w ) ) ) )
2018simprd 479 . . . . . . . . 9  |-  ( ( ( ( ( W  e.  LMod  /\  q  e.  ( Base `  (Scalar `  W ) ) )  /\  r  e.  (
Base `  (Scalar `  W
) ) )  /\  x  e.  ( Base `  W ) )  /\  w  e.  ( Base `  W ) )  -> 
( ( ( q ( .r `  (Scalar `  W ) ) r ) ( .s `  W ) w )  =  ( q ( .s `  W ) ( r ( .s
`  W ) w ) )  /\  (
( 1r `  (Scalar `  W ) ) ( .s `  W ) w )  =  w ) )
2120simpld 475 . . . . . . . 8  |-  ( ( ( ( ( W  e.  LMod  /\  q  e.  ( Base `  (Scalar `  W ) ) )  /\  r  e.  (
Base `  (Scalar `  W
) ) )  /\  x  e.  ( Base `  W ) )  /\  w  e.  ( Base `  W ) )  -> 
( ( q ( .r `  (Scalar `  W ) ) r ) ( .s `  W ) w )  =  ( q ( .s `  W ) ( r ( .s
`  W ) w ) ) )
2220simprd 479 . . . . . . . 8  |-  ( ( ( ( ( W  e.  LMod  /\  q  e.  ( Base `  (Scalar `  W ) ) )  /\  r  e.  (
Base `  (Scalar `  W
) ) )  /\  x  e.  ( Base `  W ) )  /\  w  e.  ( Base `  W ) )  -> 
( ( 1r `  (Scalar `  W ) ) ( .s `  W
) w )  =  w )
23 simp-4l 806 . . . . . . . . 9  |-  ( ( ( ( ( W  e.  LMod  /\  q  e.  ( Base `  (Scalar `  W ) ) )  /\  r  e.  (
Base `  (Scalar `  W
) ) )  /\  x  e.  ( Base `  W ) )  /\  w  e.  ( Base `  W ) )  ->  W  e.  LMod )
24 eqid 2622 . . . . . . . . . 10  |-  ( 0g
`  (Scalar `  W )
)  =  ( 0g
`  (Scalar `  W )
)
25 eqid 2622 . . . . . . . . . 10  |-  ( 0g
`  W )  =  ( 0g `  W
)
266, 2, 8, 24, 25lmod0vs 18896 . . . . . . . . 9  |-  ( ( W  e.  LMod  /\  w  e.  ( Base `  W
) )  ->  (
( 0g `  (Scalar `  W ) ) ( .s `  W ) w )  =  ( 0g `  W ) )
2723, 26sylancom 701 . . . . . . . 8  |-  ( ( ( ( ( W  e.  LMod  /\  q  e.  ( Base `  (Scalar `  W ) ) )  /\  r  e.  (
Base `  (Scalar `  W
) ) )  /\  x  e.  ( Base `  W ) )  /\  w  e.  ( Base `  W ) )  -> 
( ( 0g `  (Scalar `  W ) ) ( .s `  W
) w )  =  ( 0g `  W
) )
2821, 22, 273jca 1242 . . . . . . 7  |-  ( ( ( ( ( W  e.  LMod  /\  q  e.  ( Base `  (Scalar `  W ) ) )  /\  r  e.  (
Base `  (Scalar `  W
) ) )  /\  x  e.  ( Base `  W ) )  /\  w  e.  ( Base `  W ) )  -> 
( ( ( q ( .r `  (Scalar `  W ) ) r ) ( .s `  W ) w )  =  ( q ( .s `  W ) ( r ( .s
`  W ) w ) )  /\  (
( 1r `  (Scalar `  W ) ) ( .s `  W ) w )  =  w  /\  ( ( 0g
`  (Scalar `  W )
) ( .s `  W ) w )  =  ( 0g `  W ) ) )
2919, 28jca 554 . . . . . 6  |-  ( ( ( ( ( W  e.  LMod  /\  q  e.  ( Base `  (Scalar `  W ) ) )  /\  r  e.  (
Base `  (Scalar `  W
) ) )  /\  x  e.  ( Base `  W ) )  /\  w  e.  ( Base `  W ) )  -> 
( ( ( r ( .s `  W
) w )  e.  ( Base `  W
)  /\  ( r
( .s `  W
) ( w ( +g  `  W ) x ) )  =  ( ( r ( .s `  W ) w ) ( +g  `  W ) ( r ( .s `  W
) x ) )  /\  ( ( q ( +g  `  (Scalar `  W ) ) r ) ( .s `  W ) w )  =  ( ( q ( .s `  W
) w ) ( +g  `  W ) ( r ( .s
`  W ) w ) ) )  /\  ( ( ( q ( .r `  (Scalar `  W ) ) r ) ( .s `  W ) w )  =  ( q ( .s `  W ) ( r ( .s
`  W ) w ) )  /\  (
( 1r `  (Scalar `  W ) ) ( .s `  W ) w )  =  w  /\  ( ( 0g
`  (Scalar `  W )
) ( .s `  W ) w )  =  ( 0g `  W ) ) ) )
3029ralrimiva 2966 . . . . 5  |-  ( ( ( ( W  e. 
LMod  /\  q  e.  (
Base `  (Scalar `  W
) ) )  /\  r  e.  ( Base `  (Scalar `  W )
) )  /\  x  e.  ( Base `  W
) )  ->  A. w  e.  ( Base `  W
) ( ( ( r ( .s `  W ) w )  e.  ( Base `  W
)  /\  ( r
( .s `  W
) ( w ( +g  `  W ) x ) )  =  ( ( r ( .s `  W ) w ) ( +g  `  W ) ( r ( .s `  W
) x ) )  /\  ( ( q ( +g  `  (Scalar `  W ) ) r ) ( .s `  W ) w )  =  ( ( q ( .s `  W
) w ) ( +g  `  W ) ( r ( .s
`  W ) w ) ) )  /\  ( ( ( q ( .r `  (Scalar `  W ) ) r ) ( .s `  W ) w )  =  ( q ( .s `  W ) ( r ( .s
`  W ) w ) )  /\  (
( 1r `  (Scalar `  W ) ) ( .s `  W ) w )  =  w  /\  ( ( 0g
`  (Scalar `  W )
) ( .s `  W ) w )  =  ( 0g `  W ) ) ) )
3130ralrimiva 2966 . . . 4  |-  ( ( ( W  e.  LMod  /\  q  e.  ( Base `  (Scalar `  W )
) )  /\  r  e.  ( Base `  (Scalar `  W ) ) )  ->  A. x  e.  (
Base `  W ) A. w  e.  ( Base `  W ) ( ( ( r ( .s `  W ) w )  e.  (
Base `  W )  /\  ( r ( .s
`  W ) ( w ( +g  `  W
) x ) )  =  ( ( r ( .s `  W
) w ) ( +g  `  W ) ( r ( .s
`  W ) x ) )  /\  (
( q ( +g  `  (Scalar `  W )
) r ) ( .s `  W ) w )  =  ( ( q ( .s
`  W ) w ) ( +g  `  W
) ( r ( .s `  W ) w ) ) )  /\  ( ( ( q ( .r `  (Scalar `  W ) ) r ) ( .s
`  W ) w )  =  ( q ( .s `  W
) ( r ( .s `  W ) w ) )  /\  ( ( 1r `  (Scalar `  W ) ) ( .s `  W
) w )  =  w  /\  ( ( 0g `  (Scalar `  W ) ) ( .s `  W ) w )  =  ( 0g `  W ) ) ) )
3231ralrimiva 2966 . . 3  |-  ( ( W  e.  LMod  /\  q  e.  ( Base `  (Scalar `  W ) ) )  ->  A. r  e.  (
Base `  (Scalar `  W
) ) A. x  e.  ( Base `  W
) A. w  e.  ( Base `  W
) ( ( ( r ( .s `  W ) w )  e.  ( Base `  W
)  /\  ( r
( .s `  W
) ( w ( +g  `  W ) x ) )  =  ( ( r ( .s `  W ) w ) ( +g  `  W ) ( r ( .s `  W
) x ) )  /\  ( ( q ( +g  `  (Scalar `  W ) ) r ) ( .s `  W ) w )  =  ( ( q ( .s `  W
) w ) ( +g  `  W ) ( r ( .s
`  W ) w ) ) )  /\  ( ( ( q ( .r `  (Scalar `  W ) ) r ) ( .s `  W ) w )  =  ( q ( .s `  W ) ( r ( .s
`  W ) w ) )  /\  (
( 1r `  (Scalar `  W ) ) ( .s `  W ) w )  =  w  /\  ( ( 0g
`  (Scalar `  W )
) ( .s `  W ) w )  =  ( 0g `  W ) ) ) )
3332ralrimiva 2966 . 2  |-  ( W  e.  LMod  ->  A. q  e.  ( Base `  (Scalar `  W ) ) A. r  e.  ( Base `  (Scalar `  W )
) A. x  e.  ( Base `  W
) A. w  e.  ( Base `  W
) ( ( ( r ( .s `  W ) w )  e.  ( Base `  W
)  /\  ( r
( .s `  W
) ( w ( +g  `  W ) x ) )  =  ( ( r ( .s `  W ) w ) ( +g  `  W ) ( r ( .s `  W
) x ) )  /\  ( ( q ( +g  `  (Scalar `  W ) ) r ) ( .s `  W ) w )  =  ( ( q ( .s `  W
) w ) ( +g  `  W ) ( r ( .s
`  W ) w ) ) )  /\  ( ( ( q ( .r `  (Scalar `  W ) ) r ) ( .s `  W ) w )  =  ( q ( .s `  W ) ( r ( .s
`  W ) w ) )  /\  (
( 1r `  (Scalar `  W ) ) ( .s `  W ) w )  =  w  /\  ( ( 0g
`  (Scalar `  W )
) ( .s `  W ) w )  =  ( 0g `  W ) ) ) )
346, 7, 8, 25, 2, 9, 10, 11, 12, 24isslmd 29755 . 2  |-  ( W  e. SLMod 
<->  ( W  e. CMnd  /\  (Scalar `  W )  e. SRing  /\  A. q  e.  (
Base `  (Scalar `  W
) ) A. r  e.  ( Base `  (Scalar `  W ) ) A. x  e.  ( Base `  W ) A. w  e.  ( Base `  W
) ( ( ( r ( .s `  W ) w )  e.  ( Base `  W
)  /\  ( r
( .s `  W
) ( w ( +g  `  W ) x ) )  =  ( ( r ( .s `  W ) w ) ( +g  `  W ) ( r ( .s `  W
) x ) )  /\  ( ( q ( +g  `  (Scalar `  W ) ) r ) ( .s `  W ) w )  =  ( ( q ( .s `  W
) w ) ( +g  `  W ) ( r ( .s
`  W ) w ) ) )  /\  ( ( ( q ( .r `  (Scalar `  W ) ) r ) ( .s `  W ) w )  =  ( q ( .s `  W ) ( r ( .s
`  W ) w ) )  /\  (
( 1r `  (Scalar `  W ) ) ( .s `  W ) w )  =  w  /\  ( ( 0g
`  (Scalar `  W )
) ( .s `  W ) w )  =  ( 0g `  W ) ) ) ) )
351, 5, 33, 34syl3anbrc 1246 1  |-  ( W  e.  LMod  ->  W  e. SLMod
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   ` cfv 5888  (class class class)co 6650   Basecbs 15857   +g cplusg 15941   .rcmulr 15942  Scalarcsca 15944   .scvsca 15945   0gc0g 16100   Grpcgrp 17422  CMndccmn 18193   1rcur 18501  SRingcsrg 18505   Ringcrg 18547   LModclmod 18863  SLModcslmd 29753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-srg 18506  df-ring 18549  df-lmod 18865  df-slmd 29754
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator