| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > slmdvsdir | Structured version Visualization version Unicode version | ||
| Description: Distributive law for scalar product. (ax-hvdistr1 27865 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 22-Sep-2015.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
| Ref | Expression |
|---|---|
| slmdvsdir.v |
|
| slmdvsdir.a |
|
| slmdvsdir.f |
|
| slmdvsdir.s |
|
| slmdvsdir.k |
|
| slmdvsdir.p |
|
| Ref | Expression |
|---|---|
| slmdvsdir |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | slmdvsdir.v |
. . . . . . . 8
| |
| 2 | slmdvsdir.a |
. . . . . . . 8
| |
| 3 | slmdvsdir.s |
. . . . . . . 8
| |
| 4 | eqid 2622 |
. . . . . . . 8
| |
| 5 | slmdvsdir.f |
. . . . . . . 8
| |
| 6 | slmdvsdir.k |
. . . . . . . 8
| |
| 7 | slmdvsdir.p |
. . . . . . . 8
| |
| 8 | eqid 2622 |
. . . . . . . 8
| |
| 9 | eqid 2622 |
. . . . . . . 8
| |
| 10 | eqid 2622 |
. . . . . . . 8
| |
| 11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | slmdlema 29756 |
. . . . . . 7
|
| 12 | 11 | simpld 475 |
. . . . . 6
|
| 13 | 12 | simp3d 1075 |
. . . . 5
|
| 14 | 13 | 3expa 1265 |
. . . 4
|
| 15 | 14 | anabsan2 863 |
. . 3
|
| 16 | 15 | exp42 639 |
. 2
|
| 17 | 16 | 3imp2 1282 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-nul 4789 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 df-ov 6653 df-slmd 29754 |
| This theorem is referenced by: gsumvsca2 29783 |
| Copyright terms: Public domain | W3C validator |