| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > slmdlema | Structured version Visualization version Unicode version | ||
| Description: Lemma for properties of a semimodule. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
| Ref | Expression |
|---|---|
| isslmd.v |
|
| isslmd.a |
|
| isslmd.s |
|
| isslmd.0 |
|
| isslmd.f |
|
| isslmd.k |
|
| isslmd.p |
|
| isslmd.t |
|
| isslmd.u |
|
| isslmd.o |
|
| Ref | Expression |
|---|---|
| slmdlema |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isslmd.v |
. . . . . 6
| |
| 2 | isslmd.a |
. . . . . 6
| |
| 3 | isslmd.s |
. . . . . 6
| |
| 4 | isslmd.0 |
. . . . . 6
| |
| 5 | isslmd.f |
. . . . . 6
| |
| 6 | isslmd.k |
. . . . . 6
| |
| 7 | isslmd.p |
. . . . . 6
| |
| 8 | isslmd.t |
. . . . . 6
| |
| 9 | isslmd.u |
. . . . . 6
| |
| 10 | isslmd.o |
. . . . . 6
| |
| 11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | isslmd 29755 |
. . . . 5
|
| 12 | 11 | simp3bi 1078 |
. . . 4
|
| 13 | oveq1 6657 |
. . . . . . . . . 10
| |
| 14 | 13 | oveq1d 6665 |
. . . . . . . . 9
|
| 15 | oveq1 6657 |
. . . . . . . . . 10
| |
| 16 | 15 | oveq1d 6665 |
. . . . . . . . 9
|
| 17 | 14, 16 | eqeq12d 2637 |
. . . . . . . 8
|
| 18 | 17 | 3anbi3d 1405 |
. . . . . . 7
|
| 19 | oveq1 6657 |
. . . . . . . . . 10
| |
| 20 | 19 | oveq1d 6665 |
. . . . . . . . 9
|
| 21 | oveq1 6657 |
. . . . . . . . 9
| |
| 22 | 20, 21 | eqeq12d 2637 |
. . . . . . . 8
|
| 23 | 22 | 3anbi1d 1403 |
. . . . . . 7
|
| 24 | 18, 23 | anbi12d 747 |
. . . . . 6
|
| 25 | 24 | 2ralbidv 2989 |
. . . . 5
|
| 26 | oveq1 6657 |
. . . . . . . . 9
| |
| 27 | 26 | eleq1d 2686 |
. . . . . . . 8
|
| 28 | oveq1 6657 |
. . . . . . . . 9
| |
| 29 | oveq1 6657 |
. . . . . . . . . 10
| |
| 30 | 26, 29 | oveq12d 6668 |
. . . . . . . . 9
|
| 31 | 28, 30 | eqeq12d 2637 |
. . . . . . . 8
|
| 32 | oveq2 6658 |
. . . . . . . . . 10
| |
| 33 | 32 | oveq1d 6665 |
. . . . . . . . 9
|
| 34 | 26 | oveq2d 6666 |
. . . . . . . . 9
|
| 35 | 33, 34 | eqeq12d 2637 |
. . . . . . . 8
|
| 36 | 27, 31, 35 | 3anbi123d 1399 |
. . . . . . 7
|
| 37 | oveq2 6658 |
. . . . . . . . . 10
| |
| 38 | 37 | oveq1d 6665 |
. . . . . . . . 9
|
| 39 | 26 | oveq2d 6666 |
. . . . . . . . 9
|
| 40 | 38, 39 | eqeq12d 2637 |
. . . . . . . 8
|
| 41 | 40 | 3anbi1d 1403 |
. . . . . . 7
|
| 42 | 36, 41 | anbi12d 747 |
. . . . . 6
|
| 43 | 42 | 2ralbidv 2989 |
. . . . 5
|
| 44 | 25, 43 | rspc2v 3322 |
. . . 4
|
| 45 | 12, 44 | mpan9 486 |
. . 3
|
| 46 | oveq2 6658 |
. . . . . . . 8
| |
| 47 | 46 | oveq2d 6666 |
. . . . . . 7
|
| 48 | oveq2 6658 |
. . . . . . . 8
| |
| 49 | 48 | oveq2d 6666 |
. . . . . . 7
|
| 50 | 47, 49 | eqeq12d 2637 |
. . . . . 6
|
| 51 | 50 | 3anbi2d 1404 |
. . . . 5
|
| 52 | 51 | anbi1d 741 |
. . . 4
|
| 53 | oveq2 6658 |
. . . . . . 7
| |
| 54 | 53 | eleq1d 2686 |
. . . . . 6
|
| 55 | oveq1 6657 |
. . . . . . . 8
| |
| 56 | 55 | oveq2d 6666 |
. . . . . . 7
|
| 57 | 53 | oveq1d 6665 |
. . . . . . 7
|
| 58 | 56, 57 | eqeq12d 2637 |
. . . . . 6
|
| 59 | oveq2 6658 |
. . . . . . 7
| |
| 60 | oveq2 6658 |
. . . . . . . 8
| |
| 61 | 60, 53 | oveq12d 6668 |
. . . . . . 7
|
| 62 | 59, 61 | eqeq12d 2637 |
. . . . . 6
|
| 63 | 54, 58, 62 | 3anbi123d 1399 |
. . . . 5
|
| 64 | oveq2 6658 |
. . . . . . 7
| |
| 65 | 53 | oveq2d 6666 |
. . . . . . 7
|
| 66 | 64, 65 | eqeq12d 2637 |
. . . . . 6
|
| 67 | oveq2 6658 |
. . . . . . 7
| |
| 68 | id 22 |
. . . . . . 7
| |
| 69 | 67, 68 | eqeq12d 2637 |
. . . . . 6
|
| 70 | oveq2 6658 |
. . . . . . 7
| |
| 71 | 70 | eqeq1d 2624 |
. . . . . 6
|
| 72 | 66, 69, 71 | 3anbi123d 1399 |
. . . . 5
|
| 73 | 63, 72 | anbi12d 747 |
. . . 4
|
| 74 | 52, 73 | rspc2v 3322 |
. . 3
|
| 75 | 45, 74 | syl5com 31 |
. 2
|
| 76 | 75 | 3impia 1261 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-nul 4789 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 df-ov 6653 df-slmd 29754 |
| This theorem is referenced by: slmdvscl 29767 slmdvsdi 29768 slmdvsdir 29769 slmdvsass 29770 slmdvs1 29773 slmd0vs 29777 |
| Copyright terms: Public domain | W3C validator |