Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  slmdvsass Structured version   Visualization version   Unicode version

Theorem slmdvsass 29770
Description: Associative law for scalar product. (ax-hvmulass 27864 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 22-Sep-2015.) (Revised by Thierry Arnoux, 1-Apr-2018.)
Hypotheses
Ref Expression
slmdvsass.v  |-  V  =  ( Base `  W
)
slmdvsass.f  |-  F  =  (Scalar `  W )
slmdvsass.s  |-  .x.  =  ( .s `  W )
slmdvsass.k  |-  K  =  ( Base `  F
)
slmdvsass.t  |-  .X.  =  ( .r `  F )
Assertion
Ref Expression
slmdvsass  |-  ( ( W  e. SLMod  /\  ( Q  e.  K  /\  R  e.  K  /\  X  e.  V )
)  ->  ( ( Q  .X.  R )  .x.  X )  =  ( Q  .x.  ( R 
.x.  X ) ) )

Proof of Theorem slmdvsass
StepHypRef Expression
1 slmdvsass.v . . . . . . . 8  |-  V  =  ( Base `  W
)
2 eqid 2622 . . . . . . . 8  |-  ( +g  `  W )  =  ( +g  `  W )
3 slmdvsass.s . . . . . . . 8  |-  .x.  =  ( .s `  W )
4 eqid 2622 . . . . . . . 8  |-  ( 0g
`  W )  =  ( 0g `  W
)
5 slmdvsass.f . . . . . . . 8  |-  F  =  (Scalar `  W )
6 slmdvsass.k . . . . . . . 8  |-  K  =  ( Base `  F
)
7 eqid 2622 . . . . . . . 8  |-  ( +g  `  F )  =  ( +g  `  F )
8 slmdvsass.t . . . . . . . 8  |-  .X.  =  ( .r `  F )
9 eqid 2622 . . . . . . . 8  |-  ( 1r
`  F )  =  ( 1r `  F
)
10 eqid 2622 . . . . . . . 8  |-  ( 0g
`  F )  =  ( 0g `  F
)
111, 2, 3, 4, 5, 6, 7, 8, 9, 10slmdlema 29756 . . . . . . 7  |-  ( ( W  e. SLMod  /\  ( Q  e.  K  /\  R  e.  K )  /\  ( X  e.  V  /\  X  e.  V
) )  ->  (
( ( R  .x.  X )  e.  V  /\  ( R  .x.  ( X ( +g  `  W
) X ) )  =  ( ( R 
.x.  X ) ( +g  `  W ) ( R  .x.  X
) )  /\  (
( Q ( +g  `  F ) R ) 
.x.  X )  =  ( ( Q  .x.  X ) ( +g  `  W ) ( R 
.x.  X ) ) )  /\  ( ( ( Q  .X.  R
)  .x.  X )  =  ( Q  .x.  ( R  .x.  X ) )  /\  ( ( 1r `  F ) 
.x.  X )  =  X  /\  ( ( 0g `  F ) 
.x.  X )  =  ( 0g `  W
) ) ) )
1211simprd 479 . . . . . 6  |-  ( ( W  e. SLMod  /\  ( Q  e.  K  /\  R  e.  K )  /\  ( X  e.  V  /\  X  e.  V
) )  ->  (
( ( Q  .X.  R )  .x.  X
)  =  ( Q 
.x.  ( R  .x.  X ) )  /\  ( ( 1r `  F )  .x.  X
)  =  X  /\  ( ( 0g `  F )  .x.  X
)  =  ( 0g
`  W ) ) )
1312simp1d 1073 . . . . 5  |-  ( ( W  e. SLMod  /\  ( Q  e.  K  /\  R  e.  K )  /\  ( X  e.  V  /\  X  e.  V
) )  ->  (
( Q  .X.  R
)  .x.  X )  =  ( Q  .x.  ( R  .x.  X ) ) )
14133expa 1265 . . . 4  |-  ( ( ( W  e. SLMod  /\  ( Q  e.  K  /\  R  e.  K )
)  /\  ( X  e.  V  /\  X  e.  V ) )  -> 
( ( Q  .X.  R )  .x.  X
)  =  ( Q 
.x.  ( R  .x.  X ) ) )
1514anabsan2 863 . . 3  |-  ( ( ( W  e. SLMod  /\  ( Q  e.  K  /\  R  e.  K )
)  /\  X  e.  V )  ->  (
( Q  .X.  R
)  .x.  X )  =  ( Q  .x.  ( R  .x.  X ) ) )
1615exp42 639 . 2  |-  ( W  e. SLMod  ->  ( Q  e.  K  ->  ( R  e.  K  ->  ( X  e.  V  ->  (
( Q  .X.  R
)  .x.  X )  =  ( Q  .x.  ( R  .x.  X ) ) ) ) ) )
17163imp2 1282 1  |-  ( ( W  e. SLMod  /\  ( Q  e.  K  /\  R  e.  K  /\  X  e.  V )
)  ->  ( ( Q  .X.  R )  .x.  X )  =  ( Q  .x.  ( R 
.x.  X ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   ` cfv 5888  (class class class)co 6650   Basecbs 15857   +g cplusg 15941   .rcmulr 15942  Scalarcsca 15944   .scvsca 15945   0gc0g 16100   1rcur 18501  SLModcslmd 29753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-ov 6653  df-slmd 29754
This theorem is referenced by:  slmdvs0  29778
  Copyright terms: Public domain W3C validator