| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > snhesn | Structured version Visualization version Unicode version | ||
| Description: Any singleton is hereditary in any singleton. (Contributed by RP, 28-Mar-2020.) |
| Ref | Expression |
|---|---|
| snhesn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3203 |
. . . . . . 7
| |
| 2 | 1 | elima3 5473 |
. . . . . 6
|
| 3 | velsn 4193 |
. . . . . 6
| |
| 4 | 2, 3 | imbi12i 340 |
. . . . 5
|
| 5 | 4 | albii 1747 |
. . . 4
|
| 6 | velsn 4193 |
. . . . . . . 8
| |
| 7 | opex 4932 |
. . . . . . . . . 10
| |
| 8 | 7 | elsn 4192 |
. . . . . . . . 9
|
| 9 | vex 3203 |
. . . . . . . . . 10
| |
| 10 | 9, 1 | opth 4945 |
. . . . . . . . 9
|
| 11 | 8, 10 | bitri 264 |
. . . . . . . 8
|
| 12 | 6, 11 | anbi12i 733 |
. . . . . . 7
|
| 13 | 3anass 1042 |
. . . . . . 7
| |
| 14 | 12, 13 | bitr4i 267 |
. . . . . 6
|
| 15 | simp3 1063 |
. . . . . . 7
| |
| 16 | simp2 1062 |
. . . . . . 7
| |
| 17 | simp1 1061 |
. . . . . . 7
| |
| 18 | 15, 16, 17 | 3eqtr2d 2662 |
. . . . . 6
|
| 19 | 14, 18 | sylbi 207 |
. . . . 5
|
| 20 | 19 | exlimiv 1858 |
. . . 4
|
| 21 | 5, 20 | mpgbir 1726 |
. . 3
|
| 22 | dfss2 3591 |
. . 3
| |
| 23 | 21, 22 | mpbir 221 |
. 2
|
| 24 | df-he 38067 |
. 2
| |
| 25 | 23, 24 | mpbir 221 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-xp 5120 df-cnv 5122 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-he 38067 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |