Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  snmlfval Structured version   Visualization version   Unicode version

Theorem snmlfval 31312
Description: The function  F from snmlval 31313 maps  N to the relative density of  B in the first  N digits of the digit string of  A in base  R. (Contributed by Mario Carneiro, 6-Apr-2015.)
Hypothesis
Ref Expression
snmlff.f  |-  F  =  ( n  e.  NN  |->  ( ( # `  {
k  e.  ( 1 ... n )  |  ( |_ `  (
( A  x.  ( R ^ k ) )  mod  R ) )  =  B } )  /  n ) )
Assertion
Ref Expression
snmlfval  |-  ( N  e.  NN  ->  ( F `  N )  =  ( ( # `  { k  e.  ( 1 ... N )  |  ( |_ `  ( ( A  x.  ( R ^ k ) )  mod  R ) )  =  B }
)  /  N ) )
Distinct variable groups:    A, n    B, n    k, n, N    R, n
Allowed substitution hints:    A( k)    B( k)    R( k)    F( k, n)

Proof of Theorem snmlfval
StepHypRef Expression
1 oveq2 6658 . . . . 5  |-  ( n  =  N  ->  (
1 ... n )  =  ( 1 ... N
) )
2 rabeq 3192 . . . . 5  |-  ( ( 1 ... n )  =  ( 1 ... N )  ->  { k  e.  ( 1 ... n )  |  ( |_ `  ( ( A  x.  ( R ^ k ) )  mod  R ) )  =  B }  =  { k  e.  ( 1 ... N )  |  ( |_ `  ( ( A  x.  ( R ^ k ) )  mod  R ) )  =  B }
)
31, 2syl 17 . . . 4  |-  ( n  =  N  ->  { k  e.  ( 1 ... n )  |  ( |_ `  ( ( A  x.  ( R ^ k ) )  mod  R ) )  =  B }  =  { k  e.  ( 1 ... N )  |  ( |_ `  ( ( A  x.  ( R ^ k ) )  mod  R ) )  =  B }
)
43fveq2d 6195 . . 3  |-  ( n  =  N  ->  ( # `
 { k  e.  ( 1 ... n
)  |  ( |_
`  ( ( A  x.  ( R ^
k ) )  mod 
R ) )  =  B } )  =  ( # `  {
k  e.  ( 1 ... N )  |  ( |_ `  (
( A  x.  ( R ^ k ) )  mod  R ) )  =  B } ) )
5 id 22 . . 3  |-  ( n  =  N  ->  n  =  N )
64, 5oveq12d 6668 . 2  |-  ( n  =  N  ->  (
( # `  { k  e.  ( 1 ... n )  |  ( |_ `  ( ( A  x.  ( R ^ k ) )  mod  R ) )  =  B } )  /  n )  =  ( ( # `  {
k  e.  ( 1 ... N )  |  ( |_ `  (
( A  x.  ( R ^ k ) )  mod  R ) )  =  B } )  /  N ) )
7 snmlff.f . 2  |-  F  =  ( n  e.  NN  |->  ( ( # `  {
k  e.  ( 1 ... n )  |  ( |_ `  (
( A  x.  ( R ^ k ) )  mod  R ) )  =  B } )  /  n ) )
8 ovex 6678 . 2  |-  ( (
# `  { k  e.  ( 1 ... N
)  |  ( |_
`  ( ( A  x.  ( R ^
k ) )  mod 
R ) )  =  B } )  /  N )  e.  _V
96, 7, 8fvmpt 6282 1  |-  ( N  e.  NN  ->  ( F `  N )  =  ( ( # `  { k  e.  ( 1 ... N )  |  ( |_ `  ( ( A  x.  ( R ^ k ) )  mod  R ) )  =  B }
)  /  N ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   {crab 2916    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   1c1 9937    x. cmul 9941    / cdiv 10684   NNcn 11020   ...cfz 12326   |_cfl 12591    mod cmo 12668   ^cexp 12860   #chash 13117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator