Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  snmlval Structured version   Visualization version   Unicode version

Theorem snmlval 31313
Description: The property " A is simply normal in base  R". A number is simply normal if each digit  0  <_  b  <  R occurs in the base-  R digit string of  A with frequency  1  /  R (which is consistent with the expectation in an infinite random string of numbers selected from  0 ... R  -  1). (Contributed by Mario Carneiro, 6-Apr-2015.)
Hypothesis
Ref Expression
snml.s  |-  S  =  ( r  e.  (
ZZ>= `  2 )  |->  { x  e.  RR  |  A. b  e.  (
0 ... ( r  - 
1 ) ) ( n  e.  NN  |->  ( ( # `  {
k  e.  ( 1 ... n )  |  ( |_ `  (
( x  x.  (
r ^ k ) )  mod  r ) )  =  b } )  /  n ) )  ~~>  ( 1  / 
r ) } )
Assertion
Ref Expression
snmlval  |-  ( A  e.  ( S `  R )  <->  ( R  e.  ( ZZ>= `  2 )  /\  A  e.  RR  /\ 
A. b  e.  ( 0 ... ( R  -  1 ) ) ( n  e.  NN  |->  ( ( # `  {
k  e.  ( 1 ... n )  |  ( |_ `  (
( A  x.  ( R ^ k ) )  mod  R ) )  =  b } )  /  n ) )  ~~>  ( 1  /  R
) ) )
Distinct variable groups:    k, b, n, x, A    r, b, R, k, n, x
Allowed substitution hints:    A( r)    S( x, k, n, r, b)

Proof of Theorem snmlval
StepHypRef Expression
1 oveq1 6657 . . . . . . . . 9  |-  ( r  =  R  ->  (
r  -  1 )  =  ( R  - 
1 ) )
21oveq2d 6666 . . . . . . . 8  |-  ( r  =  R  ->  (
0 ... ( r  - 
1 ) )  =  ( 0 ... ( R  -  1 ) ) )
3 oveq1 6657 . . . . . . . . . . . . . . . . 17  |-  ( r  =  R  ->  (
r ^ k )  =  ( R ^
k ) )
43oveq2d 6666 . . . . . . . . . . . . . . . 16  |-  ( r  =  R  ->  (
x  x.  ( r ^ k ) )  =  ( x  x.  ( R ^ k
) ) )
5 id 22 . . . . . . . . . . . . . . . 16  |-  ( r  =  R  ->  r  =  R )
64, 5oveq12d 6668 . . . . . . . . . . . . . . 15  |-  ( r  =  R  ->  (
( x  x.  (
r ^ k ) )  mod  r )  =  ( ( x  x.  ( R ^
k ) )  mod 
R ) )
76fveq2d 6195 . . . . . . . . . . . . . 14  |-  ( r  =  R  ->  ( |_ `  ( ( x  x.  ( r ^
k ) )  mod  r ) )  =  ( |_ `  (
( x  x.  ( R ^ k ) )  mod  R ) ) )
87eqeq1d 2624 . . . . . . . . . . . . 13  |-  ( r  =  R  ->  (
( |_ `  (
( x  x.  (
r ^ k ) )  mod  r ) )  =  b  <->  ( |_ `  ( ( x  x.  ( R ^ k
) )  mod  R
) )  =  b ) )
98rabbidv 3189 . . . . . . . . . . . 12  |-  ( r  =  R  ->  { k  e.  ( 1 ... n )  |  ( |_ `  ( ( x  x.  ( r ^ k ) )  mod  r ) )  =  b }  =  { k  e.  ( 1 ... n )  |  ( |_ `  ( ( x  x.  ( R ^ k
) )  mod  R
) )  =  b } )
109fveq2d 6195 . . . . . . . . . . 11  |-  ( r  =  R  ->  ( # `
 { k  e.  ( 1 ... n
)  |  ( |_
`  ( ( x  x.  ( r ^
k ) )  mod  r ) )  =  b } )  =  ( # `  {
k  e.  ( 1 ... n )  |  ( |_ `  (
( x  x.  ( R ^ k ) )  mod  R ) )  =  b } ) )
1110oveq1d 6665 . . . . . . . . . 10  |-  ( r  =  R  ->  (
( # `  { k  e.  ( 1 ... n )  |  ( |_ `  ( ( x  x.  ( r ^ k ) )  mod  r ) )  =  b } )  /  n )  =  ( ( # `  {
k  e.  ( 1 ... n )  |  ( |_ `  (
( x  x.  ( R ^ k ) )  mod  R ) )  =  b } )  /  n ) )
1211mpteq2dv 4745 . . . . . . . . 9  |-  ( r  =  R  ->  (
n  e.  NN  |->  ( ( # `  {
k  e.  ( 1 ... n )  |  ( |_ `  (
( x  x.  (
r ^ k ) )  mod  r ) )  =  b } )  /  n ) )  =  ( n  e.  NN  |->  ( (
# `  { k  e.  ( 1 ... n
)  |  ( |_
`  ( ( x  x.  ( R ^
k ) )  mod 
R ) )  =  b } )  /  n ) ) )
13 oveq2 6658 . . . . . . . . 9  |-  ( r  =  R  ->  (
1  /  r )  =  ( 1  /  R ) )
1412, 13breq12d 4666 . . . . . . . 8  |-  ( r  =  R  ->  (
( n  e.  NN  |->  ( ( # `  {
k  e.  ( 1 ... n )  |  ( |_ `  (
( x  x.  (
r ^ k ) )  mod  r ) )  =  b } )  /  n ) )  ~~>  ( 1  / 
r )  <->  ( n  e.  NN  |->  ( ( # `  { k  e.  ( 1 ... n )  |  ( |_ `  ( ( x  x.  ( R ^ k
) )  mod  R
) )  =  b } )  /  n
) )  ~~>  ( 1  /  R ) ) )
152, 14raleqbidv 3152 . . . . . . 7  |-  ( r  =  R  ->  ( A. b  e.  (
0 ... ( r  - 
1 ) ) ( n  e.  NN  |->  ( ( # `  {
k  e.  ( 1 ... n )  |  ( |_ `  (
( x  x.  (
r ^ k ) )  mod  r ) )  =  b } )  /  n ) )  ~~>  ( 1  / 
r )  <->  A. b  e.  ( 0 ... ( R  -  1 ) ) ( n  e.  NN  |->  ( ( # `  { k  e.  ( 1 ... n )  |  ( |_ `  ( ( x  x.  ( R ^ k
) )  mod  R
) )  =  b } )  /  n
) )  ~~>  ( 1  /  R ) ) )
1615rabbidv 3189 . . . . . 6  |-  ( r  =  R  ->  { x  e.  RR  |  A. b  e.  ( 0 ... (
r  -  1 ) ) ( n  e.  NN  |->  ( ( # `  { k  e.  ( 1 ... n )  |  ( |_ `  ( ( x  x.  ( r ^ k
) )  mod  r
) )  =  b } )  /  n
) )  ~~>  ( 1  /  r ) }  =  { x  e.  RR  |  A. b  e.  ( 0 ... ( R  -  1 ) ) ( n  e.  NN  |->  ( ( # `  { k  e.  ( 1 ... n )  |  ( |_ `  ( ( x  x.  ( R ^ k
) )  mod  R
) )  =  b } )  /  n
) )  ~~>  ( 1  /  R ) } )
17 snml.s . . . . . 6  |-  S  =  ( r  e.  (
ZZ>= `  2 )  |->  { x  e.  RR  |  A. b  e.  (
0 ... ( r  - 
1 ) ) ( n  e.  NN  |->  ( ( # `  {
k  e.  ( 1 ... n )  |  ( |_ `  (
( x  x.  (
r ^ k ) )  mod  r ) )  =  b } )  /  n ) )  ~~>  ( 1  / 
r ) } )
18 reex 10027 . . . . . . 7  |-  RR  e.  _V
1918rabex 4813 . . . . . 6  |-  { x  e.  RR  |  A. b  e.  ( 0 ... ( R  -  1 ) ) ( n  e.  NN  |->  ( ( # `  { k  e.  ( 1 ... n )  |  ( |_ `  ( ( x  x.  ( R ^ k
) )  mod  R
) )  =  b } )  /  n
) )  ~~>  ( 1  /  R ) }  e.  _V
2016, 17, 19fvmpt 6282 . . . . 5  |-  ( R  e.  ( ZZ>= `  2
)  ->  ( S `  R )  =  {
x  e.  RR  |  A. b  e.  (
0 ... ( R  - 
1 ) ) ( n  e.  NN  |->  ( ( # `  {
k  e.  ( 1 ... n )  |  ( |_ `  (
( x  x.  ( R ^ k ) )  mod  R ) )  =  b } )  /  n ) )  ~~>  ( 1  /  R
) } )
2120eleq2d 2687 . . . 4  |-  ( R  e.  ( ZZ>= `  2
)  ->  ( A  e.  ( S `  R
)  <->  A  e.  { x  e.  RR  |  A. b  e.  ( 0 ... ( R  -  1 ) ) ( n  e.  NN  |->  ( ( # `  { k  e.  ( 1 ... n )  |  ( |_ `  ( ( x  x.  ( R ^ k
) )  mod  R
) )  =  b } )  /  n
) )  ~~>  ( 1  /  R ) } ) )
22 oveq1 6657 . . . . . . . . . . . . . 14  |-  ( x  =  A  ->  (
x  x.  ( R ^ k ) )  =  ( A  x.  ( R ^ k ) ) )
2322oveq1d 6665 . . . . . . . . . . . . 13  |-  ( x  =  A  ->  (
( x  x.  ( R ^ k ) )  mod  R )  =  ( ( A  x.  ( R ^ k ) )  mod  R ) )
2423fveq2d 6195 . . . . . . . . . . . 12  |-  ( x  =  A  ->  ( |_ `  ( ( x  x.  ( R ^
k ) )  mod 
R ) )  =  ( |_ `  (
( A  x.  ( R ^ k ) )  mod  R ) ) )
2524eqeq1d 2624 . . . . . . . . . . 11  |-  ( x  =  A  ->  (
( |_ `  (
( x  x.  ( R ^ k ) )  mod  R ) )  =  b  <->  ( |_ `  ( ( A  x.  ( R ^ k ) )  mod  R ) )  =  b ) )
2625rabbidv 3189 . . . . . . . . . 10  |-  ( x  =  A  ->  { k  e.  ( 1 ... n )  |  ( |_ `  ( ( x  x.  ( R ^ k ) )  mod  R ) )  =  b }  =  { k  e.  ( 1 ... n )  |  ( |_ `  ( ( A  x.  ( R ^ k ) )  mod  R ) )  =  b } )
2726fveq2d 6195 . . . . . . . . 9  |-  ( x  =  A  ->  ( # `
 { k  e.  ( 1 ... n
)  |  ( |_
`  ( ( x  x.  ( R ^
k ) )  mod 
R ) )  =  b } )  =  ( # `  {
k  e.  ( 1 ... n )  |  ( |_ `  (
( A  x.  ( R ^ k ) )  mod  R ) )  =  b } ) )
2827oveq1d 6665 . . . . . . . 8  |-  ( x  =  A  ->  (
( # `  { k  e.  ( 1 ... n )  |  ( |_ `  ( ( x  x.  ( R ^ k ) )  mod  R ) )  =  b } )  /  n )  =  ( ( # `  {
k  e.  ( 1 ... n )  |  ( |_ `  (
( A  x.  ( R ^ k ) )  mod  R ) )  =  b } )  /  n ) )
2928mpteq2dv 4745 . . . . . . 7  |-  ( x  =  A  ->  (
n  e.  NN  |->  ( ( # `  {
k  e.  ( 1 ... n )  |  ( |_ `  (
( x  x.  ( R ^ k ) )  mod  R ) )  =  b } )  /  n ) )  =  ( n  e.  NN  |->  ( ( # `  { k  e.  ( 1 ... n )  |  ( |_ `  ( ( A  x.  ( R ^ k ) )  mod  R ) )  =  b } )  /  n ) ) )
3029breq1d 4663 . . . . . 6  |-  ( x  =  A  ->  (
( n  e.  NN  |->  ( ( # `  {
k  e.  ( 1 ... n )  |  ( |_ `  (
( x  x.  ( R ^ k ) )  mod  R ) )  =  b } )  /  n ) )  ~~>  ( 1  /  R
)  <->  ( n  e.  NN  |->  ( ( # `  { k  e.  ( 1 ... n )  |  ( |_ `  ( ( A  x.  ( R ^ k ) )  mod  R ) )  =  b } )  /  n ) )  ~~>  ( 1  /  R ) ) )
3130ralbidv 2986 . . . . 5  |-  ( x  =  A  ->  ( A. b  e.  (
0 ... ( R  - 
1 ) ) ( n  e.  NN  |->  ( ( # `  {
k  e.  ( 1 ... n )  |  ( |_ `  (
( x  x.  ( R ^ k ) )  mod  R ) )  =  b } )  /  n ) )  ~~>  ( 1  /  R
)  <->  A. b  e.  ( 0 ... ( R  -  1 ) ) ( n  e.  NN  |->  ( ( # `  {
k  e.  ( 1 ... n )  |  ( |_ `  (
( A  x.  ( R ^ k ) )  mod  R ) )  =  b } )  /  n ) )  ~~>  ( 1  /  R
) ) )
3231elrab 3363 . . . 4  |-  ( A  e.  { x  e.  RR  |  A. b  e.  ( 0 ... ( R  -  1 ) ) ( n  e.  NN  |->  ( ( # `  { k  e.  ( 1 ... n )  |  ( |_ `  ( ( x  x.  ( R ^ k
) )  mod  R
) )  =  b } )  /  n
) )  ~~>  ( 1  /  R ) }  <-> 
( A  e.  RR  /\ 
A. b  e.  ( 0 ... ( R  -  1 ) ) ( n  e.  NN  |->  ( ( # `  {
k  e.  ( 1 ... n )  |  ( |_ `  (
( A  x.  ( R ^ k ) )  mod  R ) )  =  b } )  /  n ) )  ~~>  ( 1  /  R
) ) )
3321, 32syl6bb 276 . . 3  |-  ( R  e.  ( ZZ>= `  2
)  ->  ( A  e.  ( S `  R
)  <->  ( A  e.  RR  /\  A. b  e.  ( 0 ... ( R  -  1 ) ) ( n  e.  NN  |->  ( ( # `  { k  e.  ( 1 ... n )  |  ( |_ `  ( ( A  x.  ( R ^ k ) )  mod  R ) )  =  b } )  /  n ) )  ~~>  ( 1  /  R ) ) ) )
3433pm5.32i 669 . 2  |-  ( ( R  e.  ( ZZ>= ` 
2 )  /\  A  e.  ( S `  R
) )  <->  ( R  e.  ( ZZ>= `  2 )  /\  ( A  e.  RR  /\ 
A. b  e.  ( 0 ... ( R  -  1 ) ) ( n  e.  NN  |->  ( ( # `  {
k  e.  ( 1 ... n )  |  ( |_ `  (
( A  x.  ( R ^ k ) )  mod  R ) )  =  b } )  /  n ) )  ~~>  ( 1  /  R
) ) ) )
3517dmmptss 5631 . . . 4  |-  dom  S  C_  ( ZZ>= `  2 )
36 elfvdm 6220 . . . 4  |-  ( A  e.  ( S `  R )  ->  R  e.  dom  S )
3735, 36sseldi 3601 . . 3  |-  ( A  e.  ( S `  R )  ->  R  e.  ( ZZ>= `  2 )
)
3837pm4.71ri 665 . 2  |-  ( A  e.  ( S `  R )  <->  ( R  e.  ( ZZ>= `  2 )  /\  A  e.  ( S `  R )
) )
39 3anass 1042 . 2  |-  ( ( R  e.  ( ZZ>= ` 
2 )  /\  A  e.  RR  /\  A. b  e.  ( 0 ... ( R  -  1 ) ) ( n  e.  NN  |->  ( ( # `  { k  e.  ( 1 ... n )  |  ( |_ `  ( ( A  x.  ( R ^ k ) )  mod  R ) )  =  b } )  /  n ) )  ~~>  ( 1  /  R ) )  <->  ( R  e.  ( ZZ>= `  2 )  /\  ( A  e.  RR  /\ 
A. b  e.  ( 0 ... ( R  -  1 ) ) ( n  e.  NN  |->  ( ( # `  {
k  e.  ( 1 ... n )  |  ( |_ `  (
( A  x.  ( R ^ k ) )  mod  R ) )  =  b } )  /  n ) )  ~~>  ( 1  /  R
) ) ) )
4034, 38, 393bitr4i 292 1  |-  ( A  e.  ( S `  R )  <->  ( R  e.  ( ZZ>= `  2 )  /\  A  e.  RR  /\ 
A. b  e.  ( 0 ... ( R  -  1 ) ) ( n  e.  NN  |->  ( ( # `  {
k  e.  ( 1 ... n )  |  ( |_ `  (
( A  x.  ( R ^ k ) )  mod  R ) )  =  b } )  /  n ) )  ~~>  ( 1  /  R
) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916   class class class wbr 4653    |-> cmpt 4729   dom cdm 5114   ` cfv 5888  (class class class)co 6650   RRcr 9935   0cc0 9936   1c1 9937    x. cmul 9941    - cmin 10266    / cdiv 10684   NNcn 11020   2c2 11070   ZZ>=cuz 11687   ...cfz 12326   |_cfl 12591    mod cmo 12668   ^cexp 12860   #chash 13117    ~~> cli 14215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-cnex 9992  ax-resscn 9993
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653
This theorem is referenced by:  snmlflim  31314
  Copyright terms: Public domain W3C validator