Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  spr0el Structured version   Visualization version   Unicode version

Theorem spr0el 41732
Description: The empty set is not an unordered pair over any set  V. (Contributed by AV, 21-Nov-2021.)
Assertion
Ref Expression
spr0el  |-  (/)  e/  (Pairs `  V )

Proof of Theorem spr0el
Dummy variables  a 
b  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 spr0nelg 41726 . 2  |-  (/)  e/  {
p  |  E. a E. b  p  =  { a ,  b } }
2 sprssspr 41731 . . . . 5  |-  (Pairs `  V )  C_  { p  |  E. a E. b  p  =  { a ,  b } }
32sseli 3599 . . . 4  |-  ( (/)  e.  (Pairs `  V )  -> 
(/)  e.  { p  |  E. a E. b  p  =  { a ,  b } }
)
43con3i 150 . . 3  |-  ( -.  (/)  e.  { p  |  E. a E. b  p  =  { a ,  b } }  ->  -.  (/)  e.  (Pairs `  V ) )
5 df-nel 2898 . . 3  |-  ( (/)  e/ 
{ p  |  E. a E. b  p  =  { a ,  b } }  <->  -.  (/)  e.  {
p  |  E. a E. b  p  =  { a ,  b } } )
6 df-nel 2898 . . 3  |-  ( (/)  e/  (Pairs `  V )  <->  -.  (/)  e.  (Pairs `  V
) )
74, 5, 63imtr4i 281 . 2  |-  ( (/)  e/ 
{ p  |  E. a E. b  p  =  { a ,  b } }  ->  (/)  e/  (Pairs `  V ) )
81, 7ax-mp 5 1  |-  (/)  e/  (Pairs `  V )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    = wceq 1483   E.wex 1704    e. wcel 1990   {cab 2608    e/ wnel 2897   (/)c0 3915   {cpr 4179   ` cfv 5888  Pairscspr 41727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-spr 41728
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator