MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sprmpt2d Structured version   Visualization version   Unicode version

Theorem sprmpt2d 7350
Description: The extension of a binary relation which is the value of an operation given in maps-to notation. (Contributed by Alexander van der Vekens, 30-Oct-2017.) (Revised by AV, 20-Jun-2019.)
Hypotheses
Ref Expression
sprmpt2d.1  |-  M  =  ( v  e.  _V ,  e  e.  _V  |->  { <. x ,  y
>.  |  ( x
( v R e ) y  /\  ch ) } )
sprmpt2d.2  |-  ( (
ph  /\  v  =  V  /\  e  =  E )  ->  ( ch  <->  ps ) )
sprmpt2d.3  |-  ( ph  ->  ( V  e.  _V  /\  E  e.  _V )
)
sprmpt2d.4  |-  ( ph  ->  A. x A. y
( x ( V R E ) y  ->  th ) )
sprmpt2d.5  |-  ( ph  ->  { <. x ,  y
>.  |  th }  e.  _V )
Assertion
Ref Expression
sprmpt2d  |-  ( ph  ->  ( V M E )  =  { <. x ,  y >.  |  ( x ( V R E ) y  /\  ps ) } )
Distinct variable groups:    e, E, v, x, y    R, e, v    e, V, v, x, y    ph, e,
v, x, y    ps, e, v
Allowed substitution hints:    ps( x, y)    ch( x, y, v, e)    th( x, y, v, e)    R( x, y)    M( x, y, v, e)

Proof of Theorem sprmpt2d
StepHypRef Expression
1 sprmpt2d.1 . . 3  |-  M  =  ( v  e.  _V ,  e  e.  _V  |->  { <. x ,  y
>.  |  ( x
( v R e ) y  /\  ch ) } )
21a1i 11 . 2  |-  ( ph  ->  M  =  ( v  e.  _V ,  e  e.  _V  |->  { <. x ,  y >.  |  ( x ( v R e ) y  /\  ch ) } ) )
3 oveq12 6659 . . . . . 6  |-  ( ( v  =  V  /\  e  =  E )  ->  ( v R e )  =  ( V R E ) )
43breqd 4664 . . . . 5  |-  ( ( v  =  V  /\  e  =  E )  ->  ( x ( v R e ) y  <-> 
x ( V R E ) y ) )
54adantl 482 . . . 4  |-  ( (
ph  /\  ( v  =  V  /\  e  =  E ) )  -> 
( x ( v R e ) y  <-> 
x ( V R E ) y ) )
6 sprmpt2d.2 . . . . 5  |-  ( (
ph  /\  v  =  V  /\  e  =  E )  ->  ( ch  <->  ps ) )
763expb 1266 . . . 4  |-  ( (
ph  /\  ( v  =  V  /\  e  =  E ) )  -> 
( ch  <->  ps )
)
85, 7anbi12d 747 . . 3  |-  ( (
ph  /\  ( v  =  V  /\  e  =  E ) )  -> 
( ( x ( v R e ) y  /\  ch )  <->  ( x ( V R E ) y  /\  ps ) ) )
98opabbidv 4716 . 2  |-  ( (
ph  /\  ( v  =  V  /\  e  =  E ) )  ->  { <. x ,  y
>.  |  ( x
( v R e ) y  /\  ch ) }  =  { <. x ,  y >.  |  ( x ( V R E ) y  /\  ps ) } )
10 sprmpt2d.3 . . 3  |-  ( ph  ->  ( V  e.  _V  /\  E  e.  _V )
)
1110simpld 475 . 2  |-  ( ph  ->  V  e.  _V )
1210simprd 479 . 2  |-  ( ph  ->  E  e.  _V )
13 sprmpt2d.4 . . 3  |-  ( ph  ->  A. x A. y
( x ( V R E ) y  ->  th ) )
14 sprmpt2d.5 . . 3  |-  ( ph  ->  { <. x ,  y
>.  |  th }  e.  _V )
15 opabbrex 6695 . . 3  |-  ( ( A. x A. y
( x ( V R E ) y  ->  th )  /\  { <. x ,  y >.  |  th }  e.  _V )  ->  { <. x ,  y >.  |  ( x ( V R E ) y  /\  ps ) }  e.  _V )
1613, 14, 15syl2anc 693 . 2  |-  ( ph  ->  { <. x ,  y
>.  |  ( x
( V R E ) y  /\  ps ) }  e.  _V )
172, 9, 11, 12, 16ovmpt2d 6788 1  |-  ( ph  ->  ( V M E )  =  { <. x ,  y >.  |  ( x ( V R E ) y  /\  ps ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037   A.wal 1481    = wceq 1483    e. wcel 1990   _Vcvv 3200   class class class wbr 4653   {copab 4712  (class class class)co 6650    |-> cmpt2 6652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator