MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssimaex Structured version   Visualization version   Unicode version

Theorem ssimaex 6263
Description: The existence of a subimage. (Contributed by NM, 8-Apr-2007.)
Hypothesis
Ref Expression
ssimaex.1  |-  A  e. 
_V
Assertion
Ref Expression
ssimaex  |-  ( ( Fun  F  /\  B  C_  ( F " A
) )  ->  E. x
( x  C_  A  /\  B  =  ( F " x ) ) )
Distinct variable groups:    x, A    x, B    x, F

Proof of Theorem ssimaex
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmres 5419 . . . . 5  |-  dom  ( F  |`  A )  =  ( A  i^i  dom  F )
21imaeq2i 5464 . . . 4  |-  ( F
" dom  ( F  |`  A ) )  =  ( F " ( A  i^i  dom  F )
)
3 imadmres 5627 . . . 4  |-  ( F
" dom  ( F  |`  A ) )  =  ( F " A
)
42, 3eqtr3i 2646 . . 3  |-  ( F
" ( A  i^i  dom 
F ) )  =  ( F " A
)
54sseq2i 3630 . 2  |-  ( B 
C_  ( F "
( A  i^i  dom  F ) )  <->  B  C_  ( F " A ) )
6 ssrab2 3687 . . . 4  |-  { y  e.  ( A  i^i  dom 
F )  |  ( F `  y )  e.  B }  C_  ( A  i^i  dom  F
)
7 ssel2 3598 . . . . . . . . 9  |-  ( ( B  C_  ( F " ( A  i^i  dom  F ) )  /\  z  e.  B )  ->  z  e.  ( F " ( A  i^i  dom  F )
) )
87adantll 750 . . . . . . . 8  |-  ( ( ( Fun  F  /\  B  C_  ( F "
( A  i^i  dom  F ) ) )  /\  z  e.  B )  ->  z  e.  ( F
" ( A  i^i  dom 
F ) ) )
9 fvelima 6248 . . . . . . . . . . . 12  |-  ( ( Fun  F  /\  z  e.  ( F " ( A  i^i  dom  F )
) )  ->  E. w  e.  ( A  i^i  dom  F ) ( F `  w )  =  z )
109ex 450 . . . . . . . . . . 11  |-  ( Fun 
F  ->  ( z  e.  ( F " ( A  i^i  dom  F )
)  ->  E. w  e.  ( A  i^i  dom  F ) ( F `  w )  =  z ) )
1110adantr 481 . . . . . . . . . 10  |-  ( ( Fun  F  /\  z  e.  B )  ->  (
z  e.  ( F
" ( A  i^i  dom 
F ) )  ->  E. w  e.  ( A  i^i  dom  F )
( F `  w
)  =  z ) )
12 eleq1a 2696 . . . . . . . . . . . . . . . 16  |-  ( z  e.  B  ->  (
( F `  w
)  =  z  -> 
( F `  w
)  e.  B ) )
1312anim2d 589 . . . . . . . . . . . . . . 15  |-  ( z  e.  B  ->  (
( w  e.  ( A  i^i  dom  F
)  /\  ( F `  w )  =  z )  ->  ( w  e.  ( A  i^i  dom  F )  /\  ( F `
 w )  e.  B ) ) )
14 fveq2 6191 . . . . . . . . . . . . . . . . 17  |-  ( y  =  w  ->  ( F `  y )  =  ( F `  w ) )
1514eleq1d 2686 . . . . . . . . . . . . . . . 16  |-  ( y  =  w  ->  (
( F `  y
)  e.  B  <->  ( F `  w )  e.  B
) )
1615elrab 3363 . . . . . . . . . . . . . . 15  |-  ( w  e.  { y  e.  ( A  i^i  dom  F )  |  ( F `
 y )  e.  B }  <->  ( w  e.  ( A  i^i  dom  F )  /\  ( F `
 w )  e.  B ) )
1713, 16syl6ibr 242 . . . . . . . . . . . . . 14  |-  ( z  e.  B  ->  (
( w  e.  ( A  i^i  dom  F
)  /\  ( F `  w )  =  z )  ->  w  e.  { y  e.  ( A  i^i  dom  F )  |  ( F `  y )  e.  B } ) )
18 simpr 477 . . . . . . . . . . . . . . 15  |-  ( ( w  e.  ( A  i^i  dom  F )  /\  ( F `  w
)  =  z )  ->  ( F `  w )  =  z )
1918a1i 11 . . . . . . . . . . . . . 14  |-  ( z  e.  B  ->  (
( w  e.  ( A  i^i  dom  F
)  /\  ( F `  w )  =  z )  ->  ( F `  w )  =  z ) )
2017, 19jcad 555 . . . . . . . . . . . . 13  |-  ( z  e.  B  ->  (
( w  e.  ( A  i^i  dom  F
)  /\  ( F `  w )  =  z )  ->  ( w  e.  { y  e.  ( A  i^i  dom  F
)  |  ( F `
 y )  e.  B }  /\  ( F `  w )  =  z ) ) )
2120reximdv2 3014 . . . . . . . . . . . 12  |-  ( z  e.  B  ->  ( E. w  e.  ( A  i^i  dom  F )
( F `  w
)  =  z  ->  E. w  e.  { y  e.  ( A  i^i  dom 
F )  |  ( F `  y )  e.  B }  ( F `  w )  =  z ) )
2221adantl 482 . . . . . . . . . . 11  |-  ( ( Fun  F  /\  z  e.  B )  ->  ( E. w  e.  ( A  i^i  dom  F )
( F `  w
)  =  z  ->  E. w  e.  { y  e.  ( A  i^i  dom 
F )  |  ( F `  y )  e.  B }  ( F `  w )  =  z ) )
23 funfn 5918 . . . . . . . . . . . . 13  |-  ( Fun 
F  <->  F  Fn  dom  F )
24 inss2 3834 . . . . . . . . . . . . . . 15  |-  ( A  i^i  dom  F )  C_ 
dom  F
256, 24sstri 3612 . . . . . . . . . . . . . 14  |-  { y  e.  ( A  i^i  dom 
F )  |  ( F `  y )  e.  B }  C_  dom  F
26 fvelimab 6253 . . . . . . . . . . . . . 14  |-  ( ( F  Fn  dom  F  /\  { y  e.  ( A  i^i  dom  F
)  |  ( F `
 y )  e.  B }  C_  dom  F )  ->  ( z  e.  ( F " {
y  e.  ( A  i^i  dom  F )  |  ( F `  y )  e.  B } )  <->  E. w  e.  { y  e.  ( A  i^i  dom  F
)  |  ( F `
 y )  e.  B }  ( F `
 w )  =  z ) )
2725, 26mpan2 707 . . . . . . . . . . . . 13  |-  ( F  Fn  dom  F  -> 
( z  e.  ( F " { y  e.  ( A  i^i  dom 
F )  |  ( F `  y )  e.  B } )  <->  E. w  e.  { y  e.  ( A  i^i  dom 
F )  |  ( F `  y )  e.  B }  ( F `  w )  =  z ) )
2823, 27sylbi 207 . . . . . . . . . . . 12  |-  ( Fun 
F  ->  ( z  e.  ( F " {
y  e.  ( A  i^i  dom  F )  |  ( F `  y )  e.  B } )  <->  E. w  e.  { y  e.  ( A  i^i  dom  F
)  |  ( F `
 y )  e.  B }  ( F `
 w )  =  z ) )
2928adantr 481 . . . . . . . . . . 11  |-  ( ( Fun  F  /\  z  e.  B )  ->  (
z  e.  ( F
" { y  e.  ( A  i^i  dom  F )  |  ( F `
 y )  e.  B } )  <->  E. w  e.  { y  e.  ( A  i^i  dom  F
)  |  ( F `
 y )  e.  B }  ( F `
 w )  =  z ) )
3022, 29sylibrd 249 . . . . . . . . . 10  |-  ( ( Fun  F  /\  z  e.  B )  ->  ( E. w  e.  ( A  i^i  dom  F )
( F `  w
)  =  z  -> 
z  e.  ( F
" { y  e.  ( A  i^i  dom  F )  |  ( F `
 y )  e.  B } ) ) )
3111, 30syld 47 . . . . . . . . 9  |-  ( ( Fun  F  /\  z  e.  B )  ->  (
z  e.  ( F
" ( A  i^i  dom 
F ) )  -> 
z  e.  ( F
" { y  e.  ( A  i^i  dom  F )  |  ( F `
 y )  e.  B } ) ) )
3231adantlr 751 . . . . . . . 8  |-  ( ( ( Fun  F  /\  B  C_  ( F "
( A  i^i  dom  F ) ) )  /\  z  e.  B )  ->  ( z  e.  ( F " ( A  i^i  dom  F )
)  ->  z  e.  ( F " { y  e.  ( A  i^i  dom 
F )  |  ( F `  y )  e.  B } ) ) )
338, 32mpd 15 . . . . . . 7  |-  ( ( ( Fun  F  /\  B  C_  ( F "
( A  i^i  dom  F ) ) )  /\  z  e.  B )  ->  z  e.  ( F
" { y  e.  ( A  i^i  dom  F )  |  ( F `
 y )  e.  B } ) )
3433ex 450 . . . . . 6  |-  ( ( Fun  F  /\  B  C_  ( F " ( A  i^i  dom  F )
) )  ->  (
z  e.  B  -> 
z  e.  ( F
" { y  e.  ( A  i^i  dom  F )  |  ( F `
 y )  e.  B } ) ) )
35 fvelima 6248 . . . . . . . . 9  |-  ( ( Fun  F  /\  z  e.  ( F " {
y  e.  ( A  i^i  dom  F )  |  ( F `  y )  e.  B } ) )  ->  E. w  e.  { y  e.  ( A  i^i  dom 
F )  |  ( F `  y )  e.  B }  ( F `  w )  =  z )
3635ex 450 . . . . . . . 8  |-  ( Fun 
F  ->  ( z  e.  ( F " {
y  e.  ( A  i^i  dom  F )  |  ( F `  y )  e.  B } )  ->  E. w  e.  { y  e.  ( A  i^i  dom  F
)  |  ( F `
 y )  e.  B }  ( F `
 w )  =  z ) )
37 eleq1 2689 . . . . . . . . . . . 12  |-  ( ( F `  w )  =  z  ->  (
( F `  w
)  e.  B  <->  z  e.  B ) )
3837biimpcd 239 . . . . . . . . . . 11  |-  ( ( F `  w )  e.  B  ->  (
( F `  w
)  =  z  -> 
z  e.  B ) )
3938adantl 482 . . . . . . . . . 10  |-  ( ( w  e.  ( A  i^i  dom  F )  /\  ( F `  w
)  e.  B )  ->  ( ( F `
 w )  =  z  ->  z  e.  B ) )
4016, 39sylbi 207 . . . . . . . . 9  |-  ( w  e.  { y  e.  ( A  i^i  dom  F )  |  ( F `
 y )  e.  B }  ->  (
( F `  w
)  =  z  -> 
z  e.  B ) )
4140rexlimiv 3027 . . . . . . . 8  |-  ( E. w  e.  { y  e.  ( A  i^i  dom 
F )  |  ( F `  y )  e.  B }  ( F `  w )  =  z  ->  z  e.  B )
4236, 41syl6 35 . . . . . . 7  |-  ( Fun 
F  ->  ( z  e.  ( F " {
y  e.  ( A  i^i  dom  F )  |  ( F `  y )  e.  B } )  ->  z  e.  B ) )
4342adantr 481 . . . . . 6  |-  ( ( Fun  F  /\  B  C_  ( F " ( A  i^i  dom  F )
) )  ->  (
z  e.  ( F
" { y  e.  ( A  i^i  dom  F )  |  ( F `
 y )  e.  B } )  -> 
z  e.  B ) )
4434, 43impbid 202 . . . . 5  |-  ( ( Fun  F  /\  B  C_  ( F " ( A  i^i  dom  F )
) )  ->  (
z  e.  B  <->  z  e.  ( F " { y  e.  ( A  i^i  dom 
F )  |  ( F `  y )  e.  B } ) ) )
4544eqrdv 2620 . . . 4  |-  ( ( Fun  F  /\  B  C_  ( F " ( A  i^i  dom  F )
) )  ->  B  =  ( F " { y  e.  ( A  i^i  dom  F
)  |  ( F `
 y )  e.  B } ) )
46 ssimaex.1 . . . . . . 7  |-  A  e. 
_V
4746inex1 4799 . . . . . 6  |-  ( A  i^i  dom  F )  e.  _V
4847rabex 4813 . . . . 5  |-  { y  e.  ( A  i^i  dom 
F )  |  ( F `  y )  e.  B }  e.  _V
49 sseq1 3626 . . . . . 6  |-  ( x  =  { y  e.  ( A  i^i  dom  F )  |  ( F `
 y )  e.  B }  ->  (
x  C_  ( A  i^i  dom  F )  <->  { y  e.  ( A  i^i  dom  F )  |  ( F `
 y )  e.  B }  C_  ( A  i^i  dom  F )
) )
50 imaeq2 5462 . . . . . . 7  |-  ( x  =  { y  e.  ( A  i^i  dom  F )  |  ( F `
 y )  e.  B }  ->  ( F " x )  =  ( F " {
y  e.  ( A  i^i  dom  F )  |  ( F `  y )  e.  B } ) )
5150eqeq2d 2632 . . . . . 6  |-  ( x  =  { y  e.  ( A  i^i  dom  F )  |  ( F `
 y )  e.  B }  ->  ( B  =  ( F " x )  <->  B  =  ( F " { y  e.  ( A  i^i  dom 
F )  |  ( F `  y )  e.  B } ) ) )
5249, 51anbi12d 747 . . . . 5  |-  ( x  =  { y  e.  ( A  i^i  dom  F )  |  ( F `
 y )  e.  B }  ->  (
( x  C_  ( A  i^i  dom  F )  /\  B  =  ( F " x ) )  <-> 
( { y  e.  ( A  i^i  dom  F )  |  ( F `
 y )  e.  B }  C_  ( A  i^i  dom  F )  /\  B  =  ( F " { y  e.  ( A  i^i  dom  F )  |  ( F `
 y )  e.  B } ) ) ) )
5348, 52spcev 3300 . . . 4  |-  ( ( { y  e.  ( A  i^i  dom  F
)  |  ( F `
 y )  e.  B }  C_  ( A  i^i  dom  F )  /\  B  =  ( F " { y  e.  ( A  i^i  dom  F )  |  ( F `
 y )  e.  B } ) )  ->  E. x ( x 
C_  ( A  i^i  dom 
F )  /\  B  =  ( F "
x ) ) )
546, 45, 53sylancr 695 . . 3  |-  ( ( Fun  F  /\  B  C_  ( F " ( A  i^i  dom  F )
) )  ->  E. x
( x  C_  ( A  i^i  dom  F )  /\  B  =  ( F " x ) ) )
55 inss1 3833 . . . . . 6  |-  ( A  i^i  dom  F )  C_  A
56 sstr 3611 . . . . . 6  |-  ( ( x  C_  ( A  i^i  dom  F )  /\  ( A  i^i  dom  F
)  C_  A )  ->  x  C_  A )
5755, 56mpan2 707 . . . . 5  |-  ( x 
C_  ( A  i^i  dom 
F )  ->  x  C_  A )
5857anim1i 592 . . . 4  |-  ( ( x  C_  ( A  i^i  dom  F )  /\  B  =  ( F " x ) )  -> 
( x  C_  A  /\  B  =  ( F " x ) ) )
5958eximi 1762 . . 3  |-  ( E. x ( x  C_  ( A  i^i  dom  F
)  /\  B  =  ( F " x ) )  ->  E. x
( x  C_  A  /\  B  =  ( F " x ) ) )
6054, 59syl 17 . 2  |-  ( ( Fun  F  /\  B  C_  ( F " ( A  i^i  dom  F )
) )  ->  E. x
( x  C_  A  /\  B  =  ( F " x ) ) )
615, 60sylan2br 493 1  |-  ( ( Fun  F  /\  B  C_  ( F " A
) )  ->  E. x
( x  C_  A  /\  B  =  ( F " x ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   E.wrex 2913   {crab 2916   _Vcvv 3200    i^i cin 3573    C_ wss 3574   dom cdm 5114    |` cres 5116   "cima 5117   Fun wfun 5882    Fn wfn 5883   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896
This theorem is referenced by:  ssimaexg  6264
  Copyright terms: Public domain W3C validator