Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssrabf Structured version   Visualization version   Unicode version

Theorem ssrabf 39298
Description: Subclass of a restricted class abstraction. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
ssrabf.1  |-  F/_ x B
ssrabf.2  |-  F/_ x A
Assertion
Ref Expression
ssrabf  |-  ( B 
C_  { x  e.  A  |  ph }  <->  ( B  C_  A  /\  A. x  e.  B  ph ) )

Proof of Theorem ssrabf
StepHypRef Expression
1 df-rab 2921 . . 3  |-  { x  e.  A  |  ph }  =  { x  |  ( x  e.  A  /\  ph ) }
21sseq2i 3630 . 2  |-  ( B 
C_  { x  e.  A  |  ph }  <->  B 
C_  { x  |  ( x  e.  A  /\  ph ) } )
3 ssrabf.1 . . 3  |-  F/_ x B
43ssabf 39280 . 2  |-  ( B 
C_  { x  |  ( x  e.  A  /\  ph ) }  <->  A. x
( x  e.  B  ->  ( x  e.  A  /\  ph ) ) )
5 ssrabf.2 . . . . 5  |-  F/_ x A
63, 5dfss3f 3595 . . . 4  |-  ( B 
C_  A  <->  A. x  e.  B  x  e.  A )
76anbi1i 731 . . 3  |-  ( ( B  C_  A  /\  A. x  e.  B  ph ) 
<->  ( A. x  e.  B  x  e.  A  /\  A. x  e.  B  ph ) )
8 r19.26 3064 . . 3  |-  ( A. x  e.  B  (
x  e.  A  /\  ph )  <->  ( A. x  e.  B  x  e.  A  /\  A. x  e.  B  ph ) )
9 df-ral 2917 . . 3  |-  ( A. x  e.  B  (
x  e.  A  /\  ph )  <->  A. x ( x  e.  B  ->  (
x  e.  A  /\  ph ) ) )
107, 8, 93bitr2ri 289 . 2  |-  ( A. x ( x  e.  B  ->  ( x  e.  A  /\  ph )
)  <->  ( B  C_  A  /\  A. x  e.  B  ph ) )
112, 4, 103bitri 286 1  |-  ( B 
C_  { x  e.  A  |  ph }  <->  ( B  C_  A  /\  A. x  e.  B  ph ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481    e. wcel 1990   {cab 2608   F/_wnfc 2751   A.wral 2912   {crab 2916    C_ wss 3574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rab 2921  df-in 3581  df-ss 3588
This theorem is referenced by:  supminfxr2  39699  pimgtmnf2  40924  smfmullem4  41001  smflimsuplem7  41032
  Copyright terms: Public domain W3C validator