Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pimgtmnf2 Structured version   Visualization version   Unicode version

Theorem pimgtmnf2 40924
Description: Given a real-valued function, the preimage of an open interval, unbounded above, with lower bound -oo, is the whole domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
pimgtmnf2.1  |-  F/_ x F
pimgtmnf2.2  |-  ( ph  ->  F : A --> RR )
Assertion
Ref Expression
pimgtmnf2  |-  ( ph  ->  { x  e.  A  | -oo  <  ( F `  x ) }  =  A )
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    F( x)

Proof of Theorem pimgtmnf2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ssrab2 3687 . . 3  |-  { x  e.  A  | -oo  <  ( F `  x
) }  C_  A
21a1i 11 . 2  |-  ( ph  ->  { x  e.  A  | -oo  <  ( F `  x ) }  C_  A )
3 ssid 3624 . . . . 5  |-  A  C_  A
43a1i 11 . . . 4  |-  ( ph  ->  A  C_  A )
5 pimgtmnf2.2 . . . . . . . 8  |-  ( ph  ->  F : A --> RR )
65ffvelrnda 6359 . . . . . . 7  |-  ( (
ph  /\  y  e.  A )  ->  ( F `  y )  e.  RR )
76mnfltd 11958 . . . . . 6  |-  ( (
ph  /\  y  e.  A )  -> -oo  <  ( F `  y ) )
87ralrimiva 2966 . . . . 5  |-  ( ph  ->  A. y  e.  A -oo  <  ( F `  y ) )
9 nfcv 2764 . . . . . . 7  |-  F/_ x -oo
10 nfcv 2764 . . . . . . 7  |-  F/_ x  <
11 pimgtmnf2.1 . . . . . . . 8  |-  F/_ x F
12 nfcv 2764 . . . . . . . 8  |-  F/_ x
y
1311, 12nffv 6198 . . . . . . 7  |-  F/_ x
( F `  y
)
149, 10, 13nfbr 4699 . . . . . 6  |-  F/ x -oo  <  ( F `  y )
15 nfv 1843 . . . . . 6  |-  F/ y -oo  <  ( F `  x )
16 fveq2 6191 . . . . . . 7  |-  ( y  =  x  ->  ( F `  y )  =  ( F `  x ) )
1716breq2d 4665 . . . . . 6  |-  ( y  =  x  ->  ( -oo  <  ( F `  y )  <-> -oo  <  ( F `  x )
) )
1814, 15, 17cbvral 3167 . . . . 5  |-  ( A. y  e.  A -oo  <  ( F `  y
)  <->  A. x  e.  A -oo  <  ( F `  x ) )
198, 18sylib 208 . . . 4  |-  ( ph  ->  A. x  e.  A -oo  <  ( F `  x ) )
204, 19jca 554 . . 3  |-  ( ph  ->  ( A  C_  A  /\  A. x  e.  A -oo  <  ( F `  x ) ) )
21 nfcv 2764 . . . 4  |-  F/_ x A
2221, 21ssrabf 39298 . . 3  |-  ( A 
C_  { x  e.  A  | -oo  <  ( F `  x ) }  <->  ( A  C_  A  /\  A. x  e.  A -oo  <  ( F `  x )
) )
2320, 22sylibr 224 . 2  |-  ( ph  ->  A  C_  { x  e.  A  | -oo  <  ( F `  x
) } )
242, 23eqssd 3620 1  |-  ( ph  ->  { x  e.  A  | -oo  <  ( F `  x ) }  =  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   F/_wnfc 2751   A.wral 2912   {crab 2916    C_ wss 3574   class class class wbr 4653   -->wf 5884   ` cfv 5888   RRcr 9935   -oocmnf 10072    < clt 10074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079
This theorem is referenced by:  pimgtmnf  40932
  Copyright terms: Public domain W3C validator