| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ssrelf | Structured version Visualization version Unicode version | ||
| Description: A subclass relationship depends only on a relation's ordered pairs. Theorem 3.2(i) of [Monk1] p. 33. (Contributed by NM, 2-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Revised by Thierry Arnoux, 6-Nov-2017.) |
| Ref | Expression |
|---|---|
| eqrelrd2.1 |
|
| eqrelrd2.2 |
|
| eqrelrd2.3 |
|
| eqrelrd2.4 |
|
| eqrelrd2.5 |
|
| eqrelrd2.6 |
|
| Ref | Expression |
|---|---|
| ssrelf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqrelrd2.3 |
. . . 4
| |
| 2 | eqrelrd2.5 |
. . . 4
| |
| 3 | 1, 2 | nfss 3596 |
. . 3
|
| 4 | eqrelrd2.4 |
. . . . 5
| |
| 5 | eqrelrd2.6 |
. . . . 5
| |
| 6 | 4, 5 | nfss 3596 |
. . . 4
|
| 7 | ssel 3597 |
. . . 4
| |
| 8 | 6, 7 | alrimi 2082 |
. . 3
|
| 9 | 3, 8 | alrimi 2082 |
. 2
|
| 10 | eleq1 2689 |
. . . . . . . . . . 11
| |
| 11 | eleq1 2689 |
. . . . . . . . . . 11
| |
| 12 | 10, 11 | imbi12d 334 |
. . . . . . . . . 10
|
| 13 | 12 | biimprcd 240 |
. . . . . . . . 9
|
| 14 | 13 | 2alimi 1740 |
. . . . . . . 8
|
| 15 | 4 | nfcri 2758 |
. . . . . . . . . . . 12
|
| 16 | 5 | nfcri 2758 |
. . . . . . . . . . . 12
|
| 17 | 15, 16 | nfim 1825 |
. . . . . . . . . . 11
|
| 18 | 17 | 19.23 2080 |
. . . . . . . . . 10
|
| 19 | 18 | albii 1747 |
. . . . . . . . 9
|
| 20 | 1 | nfcri 2758 |
. . . . . . . . . . 11
|
| 21 | 2 | nfcri 2758 |
. . . . . . . . . . 11
|
| 22 | 20, 21 | nfim 1825 |
. . . . . . . . . 10
|
| 23 | 22 | 19.23 2080 |
. . . . . . . . 9
|
| 24 | 19, 23 | bitri 264 |
. . . . . . . 8
|
| 25 | 14, 24 | sylib 208 |
. . . . . . 7
|
| 26 | 25 | com23 86 |
. . . . . 6
|
| 27 | 26 | a2d 29 |
. . . . 5
|
| 28 | 27 | alimdv 1845 |
. . . 4
|
| 29 | df-rel 5121 |
. . . . 5
| |
| 30 | dfss2 3591 |
. . . . 5
| |
| 31 | elvv 5177 |
. . . . . . 7
| |
| 32 | 31 | imbi2i 326 |
. . . . . 6
|
| 33 | 32 | albii 1747 |
. . . . 5
|
| 34 | 29, 30, 33 | 3bitri 286 |
. . . 4
|
| 35 | dfss2 3591 |
. . . 4
| |
| 36 | 28, 34, 35 | 3imtr4g 285 |
. . 3
|
| 37 | 36 | com12 32 |
. 2
|
| 38 | 9, 37 | impbid2 216 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-opab 4713 df-xp 5120 df-rel 5121 |
| This theorem is referenced by: eqrelrd2 29426 |
| Copyright terms: Public domain | W3C validator |