Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssrexr Structured version   Visualization version   Unicode version

Theorem ssrexr 39659
Description: A subset of the reals is a subset of the extended reals (common case). (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypothesis
Ref Expression
ssrexr.1  |-  ( ph  ->  A  C_  RR )
Assertion
Ref Expression
ssrexr  |-  ( ph  ->  A  C_  RR* )

Proof of Theorem ssrexr
StepHypRef Expression
1 ssrexr.1 . 2  |-  ( ph  ->  A  C_  RR )
2 ressxr 10083 . . 3  |-  RR  C_  RR*
32a1i 11 . 2  |-  ( ph  ->  RR  C_  RR* )
41, 3sstrd 3613 1  |-  ( ph  ->  A  C_  RR* )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    C_ wss 3574   RRcr 9935   RR*cxr 10073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-un 3579  df-in 3581  df-ss 3588  df-xr 10078
This theorem is referenced by:  liminfval2  40000
  Copyright terms: Public domain W3C validator