Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  liminfval2 Structured version   Visualization version   Unicode version

Theorem liminfval2 40000
Description: The superior limit, relativized to an unbounded set. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
liminfval2.1  |-  G  =  ( k  e.  RR  |-> inf ( ( ( F
" ( k [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )
liminfval2.2  |-  ( ph  ->  F  e.  V )
liminfval2.3  |-  ( ph  ->  A  C_  RR )
liminfval2.4  |-  ( ph  ->  sup ( A ,  RR* ,  <  )  = +oo )
Assertion
Ref Expression
liminfval2  |-  ( ph  ->  (liminf `  F )  =  sup ( ( G
" A ) , 
RR* ,  <  ) )
Distinct variable group:    k, F
Allowed substitution hints:    ph( k)    A( k)    G( k)    V( k)

Proof of Theorem liminfval2
Dummy variables  x  n  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 liminfval2.2 . . 3  |-  ( ph  ->  F  e.  V )
2 liminfval2.1 . . . . 5  |-  G  =  ( k  e.  RR  |-> inf ( ( ( F
" ( k [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )
3 oveq1 6657 . . . . . . . . 9  |-  ( k  =  j  ->  (
k [,) +oo )  =  ( j [,) +oo ) )
43imaeq2d 5466 . . . . . . . 8  |-  ( k  =  j  ->  ( F " ( k [,) +oo ) )  =  ( F " ( j [,) +oo ) ) )
54ineq1d 3813 . . . . . . 7  |-  ( k  =  j  ->  (
( F " (
k [,) +oo )
)  i^i  RR* )  =  ( ( F "
( j [,) +oo ) )  i^i  RR* ) )
65infeq1d 8383 . . . . . 6  |-  ( k  =  j  -> inf ( ( ( F " (
k [,) +oo )
)  i^i  RR* ) , 
RR* ,  <  )  = inf ( ( ( F
" ( j [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )
76cbvmptv 4750 . . . . 5  |-  ( k  e.  RR  |-> inf ( ( ( F " (
k [,) +oo )
)  i^i  RR* ) , 
RR* ,  <  ) )  =  ( j  e.  RR  |-> inf ( ( ( F " ( j [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )
82, 7eqtri 2644 . . . 4  |-  G  =  ( j  e.  RR  |-> inf ( ( ( F
" ( j [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )
98liminfval 39991 . . 3  |-  ( F  e.  V  ->  (liminf `  F )  =  sup ( ran  G ,  RR* ,  <  ) )
101, 9syl 17 . 2  |-  ( ph  ->  (liminf `  F )  =  sup ( ran  G ,  RR* ,  <  )
)
11 liminfval2.4 . . . . . . 7  |-  ( ph  ->  sup ( A ,  RR* ,  <  )  = +oo )
12 liminfval2.3 . . . . . . . . 9  |-  ( ph  ->  A  C_  RR )
1312ssrexr 39659 . . . . . . . 8  |-  ( ph  ->  A  C_  RR* )
14 supxrunb1 12149 . . . . . . . 8  |-  ( A 
C_  RR*  ->  ( A. n  e.  RR  E. x  e.  A  n  <_  x  <->  sup ( A ,  RR* ,  <  )  = +oo ) )
1513, 14syl 17 . . . . . . 7  |-  ( ph  ->  ( A. n  e.  RR  E. x  e.  A  n  <_  x  <->  sup ( A ,  RR* ,  <  )  = +oo ) )
1611, 15mpbird 247 . . . . . 6  |-  ( ph  ->  A. n  e.  RR  E. x  e.  A  n  <_  x )
178liminfgf 39990 . . . . . . . . . . 11  |-  G : RR
--> RR*
1817ffvelrni 6358 . . . . . . . . . 10  |-  ( n  e.  RR  ->  ( G `  n )  e.  RR* )
1918ad2antlr 763 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  RR )  /\  (
x  e.  A  /\  n  <_  x ) )  ->  ( G `  n )  e.  RR* )
20 simpll 790 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  RR )  /\  (
x  e.  A  /\  n  <_  x ) )  ->  ph )
21 simprl 794 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  RR )  /\  (
x  e.  A  /\  n  <_  x ) )  ->  x  e.  A
)
2212sselda 3603 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  RR )
2317ffvelrni 6358 . . . . . . . . . . 11  |-  ( x  e.  RR  ->  ( G `  x )  e.  RR* )
2422, 23syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  ( G `  x )  e.  RR* )
2520, 21, 24syl2anc 693 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  RR )  /\  (
x  e.  A  /\  n  <_  x ) )  ->  ( G `  x )  e.  RR* )
26 imassrn 5477 . . . . . . . . . . . 12  |-  ( G
" A )  C_  ran  G
27 frn 6053 . . . . . . . . . . . . 13  |-  ( G : RR --> RR*  ->  ran 
G  C_  RR* )
2817, 27ax-mp 5 . . . . . . . . . . . 12  |-  ran  G  C_ 
RR*
2926, 28sstri 3612 . . . . . . . . . . 11  |-  ( G
" A )  C_  RR*
30 supxrcl 12145 . . . . . . . . . . 11  |-  ( ( G " A ) 
C_  RR*  ->  sup (
( G " A
) ,  RR* ,  <  )  e.  RR* )
3129, 30ax-mp 5 . . . . . . . . . 10  |-  sup (
( G " A
) ,  RR* ,  <  )  e.  RR*
3231a1i 11 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  RR )  /\  (
x  e.  A  /\  n  <_  x ) )  ->  sup ( ( G
" A ) , 
RR* ,  <  )  e. 
RR* )
33 simplr 792 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  RR )  /\  (
x  e.  A  /\  n  <_  x ) )  ->  n  e.  RR )
3420, 21, 22syl2anc 693 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  RR )  /\  (
x  e.  A  /\  n  <_  x ) )  ->  x  e.  RR )
35 simprr 796 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  RR )  /\  (
x  e.  A  /\  n  <_  x ) )  ->  n  <_  x
)
36 liminfgord 39986 . . . . . . . . . . 11  |-  ( ( n  e.  RR  /\  x  e.  RR  /\  n  <_  x )  -> inf ( ( ( F " (
n [,) +oo )
)  i^i  RR* ) , 
RR* ,  <  )  <_ inf ( ( ( F
" ( x [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )
3733, 34, 35, 36syl3anc 1326 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  RR )  /\  (
x  e.  A  /\  n  <_  x ) )  -> inf ( ( ( F " ( n [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )  <_ inf ( ( ( F " (
x [,) +oo )
)  i^i  RR* ) , 
RR* ,  <  ) )
388liminfgval 39994 . . . . . . . . . . . . 13  |-  ( n  e.  RR  ->  ( G `  n )  = inf ( ( ( F
" ( n [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )
3938ad2antlr 763 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  RR )  /\  x  e.  A )  ->  ( G `  n )  = inf ( ( ( F
" ( n [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )
408liminfgval 39994 . . . . . . . . . . . . . 14  |-  ( x  e.  RR  ->  ( G `  x )  = inf ( ( ( F
" ( x [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )
4122, 40syl 17 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  ( G `  x )  = inf ( ( ( F
" ( x [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )
4241adantlr 751 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  RR )  /\  x  e.  A )  ->  ( G `  x )  = inf ( ( ( F
" ( x [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )
4339, 42breq12d 4666 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  RR )  /\  x  e.  A )  ->  (
( G `  n
)  <_  ( G `  x )  <-> inf ( (
( F " (
n [,) +oo )
)  i^i  RR* ) , 
RR* ,  <  )  <_ inf ( ( ( F
" ( x [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) )
4443adantrr 753 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  RR )  /\  (
x  e.  A  /\  n  <_  x ) )  ->  ( ( G `
 n )  <_ 
( G `  x
)  <-> inf ( ( ( F
" ( n [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )  <_ inf ( ( ( F " ( x [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) )
4537, 44mpbird 247 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  RR )  /\  (
x  e.  A  /\  n  <_  x ) )  ->  ( G `  n )  <_  ( G `  x )
)
4629a1i 11 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  ( G " A )  C_  RR* )
47 nfv 1843 . . . . . . . . . . . . . 14  |-  F/ j
ph
48 inss2 3834 . . . . . . . . . . . . . . . 16  |-  ( ( F " ( j [,) +oo ) )  i^i  RR* )  C_  RR*
49 infxrcl 12163 . . . . . . . . . . . . . . . 16  |-  ( ( ( F " (
j [,) +oo )
)  i^i  RR* )  C_  RR* 
-> inf ( ( ( F
" ( j [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )  e.  RR* )
5048, 49ax-mp 5 . . . . . . . . . . . . . . 15  |- inf ( ( ( F " (
j [,) +oo )
)  i^i  RR* ) , 
RR* ,  <  )  e. 
RR*
5150a1i 11 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  j  e.  RR )  -> inf ( ( ( F " (
j [,) +oo )
)  i^i  RR* ) , 
RR* ,  <  )  e. 
RR* )
5247, 51, 8fnmptd 39434 . . . . . . . . . . . . 13  |-  ( ph  ->  G  Fn  RR )
5352adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  G  Fn  RR )
54 simpr 477 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  A )
5553, 22, 54fnfvimad 39459 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  ( G `  x )  e.  ( G " A
) )
56 supxrub 12154 . . . . . . . . . . 11  |-  ( ( ( G " A
)  C_  RR*  /\  ( G `  x )  e.  ( G " A
) )  ->  ( G `  x )  <_  sup ( ( G
" A ) , 
RR* ,  <  ) )
5746, 55, 56syl2anc 693 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  ( G `  x )  <_  sup ( ( G
" A ) , 
RR* ,  <  ) )
5820, 21, 57syl2anc 693 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  RR )  /\  (
x  e.  A  /\  n  <_  x ) )  ->  ( G `  x )  <_  sup ( ( G " A ) ,  RR* ,  <  ) )
5919, 25, 32, 45, 58xrletrd 11993 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  RR )  /\  (
x  e.  A  /\  n  <_  x ) )  ->  ( G `  n )  <_  sup ( ( G " A ) ,  RR* ,  <  ) )
6059rexlimdvaa 3032 . . . . . . 7  |-  ( (
ph  /\  n  e.  RR )  ->  ( E. x  e.  A  n  <_  x  ->  ( G `  n )  <_  sup ( ( G
" A ) , 
RR* ,  <  ) ) )
6160ralimdva 2962 . . . . . 6  |-  ( ph  ->  ( A. n  e.  RR  E. x  e.  A  n  <_  x  ->  A. n  e.  RR  ( G `  n )  <_  sup ( ( G
" A ) , 
RR* ,  <  ) ) )
6216, 61mpd 15 . . . . 5  |-  ( ph  ->  A. n  e.  RR  ( G `  n )  <_  sup ( ( G
" A ) , 
RR* ,  <  ) )
63 xrltso 11974 . . . . . . . . 9  |-  <  Or  RR*
6463infex 8399 . . . . . . . 8  |- inf ( ( ( F " (
j [,) +oo )
)  i^i  RR* ) , 
RR* ,  <  )  e. 
_V
6564rgenw 2924 . . . . . . 7  |-  A. j  e.  RR inf ( ( ( F " ( j [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )  e.  _V
668fnmpt 6020 . . . . . . 7  |-  ( A. j  e.  RR inf ( ( ( F " (
j [,) +oo )
)  i^i  RR* ) , 
RR* ,  <  )  e. 
_V  ->  G  Fn  RR )
6765, 66ax-mp 5 . . . . . 6  |-  G  Fn  RR
68 breq1 4656 . . . . . . 7  |-  ( x  =  ( G `  n )  ->  (
x  <_  sup (
( G " A
) ,  RR* ,  <  )  <-> 
( G `  n
)  <_  sup (
( G " A
) ,  RR* ,  <  ) ) )
6968ralrn 6362 . . . . . 6  |-  ( G  Fn  RR  ->  ( A. x  e.  ran  G  x  <_  sup (
( G " A
) ,  RR* ,  <  )  <->  A. n  e.  RR  ( G `  n )  <_  sup ( ( G
" A ) , 
RR* ,  <  ) ) )
7067, 69ax-mp 5 . . . . 5  |-  ( A. x  e.  ran  G  x  <_  sup ( ( G
" A ) , 
RR* ,  <  )  <->  A. n  e.  RR  ( G `  n )  <_  sup ( ( G " A ) ,  RR* ,  <  ) )
7162, 70sylibr 224 . . . 4  |-  ( ph  ->  A. x  e.  ran  G  x  <_  sup (
( G " A
) ,  RR* ,  <  ) )
72 supxrleub 12156 . . . . 5  |-  ( ( ran  G  C_  RR*  /\  sup ( ( G " A ) ,  RR* ,  <  )  e.  RR* )  ->  ( sup ( ran  G ,  RR* ,  <  )  <_  sup ( ( G
" A ) , 
RR* ,  <  )  <->  A. x  e.  ran  G  x  <_  sup ( ( G " A ) ,  RR* ,  <  ) ) )
7328, 31, 72mp2an 708 . . . 4  |-  ( sup ( ran  G ,  RR* ,  <  )  <_  sup ( ( G " A ) ,  RR* ,  <  )  <->  A. x  e.  ran  G  x  <_  sup ( ( G " A ) ,  RR* ,  <  ) )
7471, 73sylibr 224 . . 3  |-  ( ph  ->  sup ( ran  G ,  RR* ,  <  )  <_  sup ( ( G
" A ) , 
RR* ,  <  ) )
7526a1i 11 . . . 4  |-  ( ph  ->  ( G " A
)  C_  ran  G )
7628a1i 11 . . . 4  |-  ( ph  ->  ran  G  C_  RR* )
77 supxrss 12162 . . . 4  |-  ( ( ( G " A
)  C_  ran  G  /\  ran  G  C_  RR* )  ->  sup ( ( G " A ) ,  RR* ,  <  )  <_  sup ( ran  G ,  RR* ,  <  ) )
7875, 76, 77syl2anc 693 . . 3  |-  ( ph  ->  sup ( ( G
" A ) , 
RR* ,  <  )  <_  sup ( ran  G ,  RR* ,  <  ) )
79 supxrcl 12145 . . . . 5  |-  ( ran 
G  C_  RR*  ->  sup ( ran  G ,  RR* ,  <  )  e.  RR* )
8028, 79ax-mp 5 . . . 4  |-  sup ( ran  G ,  RR* ,  <  )  e.  RR*
81 xrletri3 11985 . . . 4  |-  ( ( sup ( ran  G ,  RR* ,  <  )  e.  RR*  /\  sup (
( G " A
) ,  RR* ,  <  )  e.  RR* )  ->  ( sup ( ran  G ,  RR* ,  <  )  =  sup ( ( G
" A ) , 
RR* ,  <  )  <->  ( sup ( ran  G ,  RR* ,  <  )  <_  sup ( ( G " A ) ,  RR* ,  <  )  /\  sup ( ( G " A ) ,  RR* ,  <  )  <_  sup ( ran  G ,  RR* ,  <  ) ) ) )
8280, 31, 81mp2an 708 . . 3  |-  ( sup ( ran  G ,  RR* ,  <  )  =  sup ( ( G
" A ) , 
RR* ,  <  )  <->  ( sup ( ran  G ,  RR* ,  <  )  <_  sup ( ( G " A ) ,  RR* ,  <  )  /\  sup ( ( G " A ) ,  RR* ,  <  )  <_  sup ( ran  G ,  RR* ,  <  ) ) )
8374, 78, 82sylanbrc 698 . 2  |-  ( ph  ->  sup ( ran  G ,  RR* ,  <  )  =  sup ( ( G
" A ) , 
RR* ,  <  ) )
8410, 83eqtrd 2656 1  |-  ( ph  ->  (liminf `  F )  =  sup ( ( G
" A ) , 
RR* ,  <  ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   _Vcvv 3200    i^i cin 3573    C_ wss 3574   class class class wbr 4653    |-> cmpt 4729   ran crn 5115   "cima 5117    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   supcsup 8346  infcinf 8347   RRcr 9935   +oocpnf 10071   RR*cxr 10073    < clt 10074    <_ cle 10075   [,)cico 12177  liminfclsi 39983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-ico 12181  df-liminf 39984
This theorem is referenced by:  liminfresico  40003
  Copyright terms: Public domain W3C validator