HomeHome Metamath Proof Explorer
Theorem List (p. 397 of 426)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-27775)
  Hilbert Space Explorer  Hilbert Space Explorer
(27776-29300)
  Users' Mathboxes  Users' Mathboxes
(29301-42551)
 

Theorem List for Metamath Proof Explorer - 39601-39700   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoreminfxrrefi 39601 The real and extended real infima match when the set is finite. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
 |-  (
 ( A  C_  RR  /\  A  e.  Fin  /\  A  =/=  (/) )  -> inf ( A ,  RR* ,  <  )  = inf ( A ,  RR ,  <  ) )
 
Theoremxrralrecnnle 39602* Show that  A is less than  B by showing that there is no positive bound on the difference. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
 |-  F/ n ph   &    |-  ( ph  ->  A  e.  RR* )   &    |-  ( ph  ->  B  e.  RR )   =>    |-  ( ph  ->  ( A  <_  B  <->  A. n  e.  NN  A  <_  ( B  +  ( 1  /  n ) ) ) )
 
Theoremfzoct 39603 A finite set of sequential integer is countable. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
 |-  ( N..^ M )  ~<_  om
 
Theoremfrexr 39604 A function taking real values, is a function taking extended real values. Common case. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
 |-  ( ph  ->  F : A --> RR )   =>    |-  ( ph  ->  F : A --> RR* )
 
Theoremnnrecrp 39605 The reciprocal of a positive natural number is a positive real number. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
 |-  ( N  e.  NN  ->  ( 1  /  N )  e.  RR+ )
 
Theoremqred 39606 A rational number is a real number. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
 |-  ( ph  ->  A  e.  QQ )   =>    |-  ( ph  ->  A  e.  RR )
 
Theoremreclt0d 39607 The reciprocal of a negative number is negative. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  A  <  0 )   =>    |-  ( ph  ->  (
 1  /  A )  <  0 )
 
Theoremlt0neg1dd 39608 If a number is negative, its negative is positive. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  A  <  0 )   =>    |-  ( ph  ->  0  < 
 -u A )
 
Theoremmnfled 39609 Minus infinity is less than or equal to any extended real. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
 |-  ( ph  ->  A  e.  RR* )   =>    |-  ( ph  -> -oo  <_  A )
 
Theoremxrleidd 39610 'Less than or equal to' is reflexive for extended reals. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
 |-  ( ph  ->  A  e.  RR* )   =>    |-  ( ph  ->  A  <_  A )
 
Theoremnegelrpd 39611 The negation of a negative number is in the positive real numbers. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  A  <  0 )   =>    |-  ( ph  ->  -u A  e.  RR+ )
 
Theoreminfxrcld 39612 The infimum of an arbitrary set of extended reals is an extended real. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
 |-  ( ph  ->  A  C_  RR* )   =>    |-  ( ph  -> inf ( A ,  RR*
 ,  <  )  e.  RR* )
 
Theoremxrralrecnnge 39613* Show that  A is less than  B by showing that there is no positive bound on the difference. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
 |-  F/ n ph   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR* )   =>    |-  ( ph  ->  ( A  <_  B  <->  A. n  e.  NN  ( A  -  (
 1  /  n )
 )  <_  B )
 )
 
Theoremreclt0 39614 The reciprocal of a negative number is negative. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  A  =/=  0 )   =>    |-  ( ph  ->  ( A  <  0  <->  ( 1  /  A )  <  0 ) )
 
Theoremltmulneg 39615 Multiplying by a negative number, swaps the order. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   &    |-  ( ph  ->  C  <  0
 )   =>    |-  ( ph  ->  ( A  <  B  <->  ( B  x.  C )  <  ( A  x.  C ) ) )
 
Theoremallbutfi 39616* For all but finitely many. Some authors say "cofinitely many". Some authors say "ultimately". Compare with eliuniin 39279 and eliuniin2 39303 (here, the precondition can be dropped; see eliuniincex 39292). (Contributed by Glauco Siliprandi, 26-Jun-2021.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  A  =  U_ n  e.  Z  |^|_
 m  e.  ( ZZ>= `  n ) B   =>    |-  ( X  e.  A 
 <-> 
 E. n  e.  Z  A. m  e.  ( ZZ>= `  n ) X  e.  B )
 
Theoremltdiv23neg 39617 Swap denominator with other side of 'less than', when both are negative. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  B  <  0 )   &    |-  ( ph  ->  C  e.  RR )   &    |-  ( ph  ->  C  <  0 )   =>    |-  ( ph  ->  (
 ( A  /  B )  <  C  <->  ( A  /  C )  <  B ) )
 
Theoremxreqnltd 39618 A consequence of trichotomy. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  ( ph  ->  A  e.  RR* )   &    |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  -.  A  <  B )
 
Theoremmnfnre2 39619 Minus infinity is not a real number. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  -. -oo 
 e.  RR
 
Theoremuzssre 39620 An upper set of integers is a subset of the Reals. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  ( ZZ>=
 `  M )  C_  RR
 
Theoremzssxr 39621 The integers are a subset of the extended reals. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  ZZ  C_  RR*
 
Theoremfisupclrnmpt 39622* A nonempty finite indexed set contains its supremum. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  F/ x ph   &    |-  ( ph  ->  R  Or  A )   &    |-  ( ph  ->  B  e.  Fin )   &    |-  ( ph  ->  B  =/= 
 (/) )   &    |-  ( ( ph  /\  x  e.  B ) 
 ->  C  e.  A )   =>    |-  ( ph  ->  sup ( ran  ( x  e.  B  |->  C ) ,  A ,  R )  e.  A )
 
Theoremsupxrunb3 39623* The supremum of an unbounded-above set of extended reals is plus infinity. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  ( A  C_  RR*  ->  ( A. x  e.  RR  E. y  e.  A  x  <_  y  <->  sup ( A ,  RR* ,  <  )  = +oo ) )
 
Theoremelfzod 39624 Membership in a half-open integer interval. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  ( ph  ->  K  e.  ( ZZ>=
 `  M ) )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ph  ->  K  <  N )   =>    |-  ( ph  ->  K  e.  ( M..^ N ) )
 
Theoremfimaxre4 39625* A nonempty finite set of real numbers is bounded (image set version). (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  F/ x ph   &    |-  ( ph  ->  A  e.  Fin )   &    |-  (
 ( ph  /\  x  e.  A )  ->  B  e.  RR )   =>    |-  ( ph  ->  E. y  e.  RR  A. x  e.  A  B  <_  y
 )
 
Theoremren0 39626 The set of reals is nonempty. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  RR  =/= 
 (/)
 
Theoremeluzelz2 39627 A member of an upper set of integers is an integer. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  Z  =  ( ZZ>= `  M )   =>    |-  ( N  e.  Z  ->  N  e.  ZZ )
 
Theorempnfnre2 39628 Plus infinity is not a real number. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  -. +oo 
 e.  RR
 
Theoremresabs2d 39629 Absorption law for restriction. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  ( ph  ->  B  C_  C )   =>    |-  ( ph  ->  (
 ( A  |`  B )  |`  C )  =  ( A  |`  B )
 )
 
Theoremuzid2 39630 Membership of the least member in an upper set of integers. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  ( M  e.  ( ZZ>= `  N )  ->  M  e.  ( ZZ>= `  M )
 )
 
Theoremuzidd 39631 Membership of the least member in an upper set of integers. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  ( ph  ->  M  e.  ZZ )   =>    |-  ( ph  ->  M  e.  ( ZZ>= `  M )
 )
 
Theoremsupxrleubrnmpt 39632* The supremum of a nonempty bounded indexed set of extended reals is less than or equal to an upper bound. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  F/ x ph   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  B  e.  RR* )   &    |-  ( ph  ->  C  e.  RR* )   =>    |-  ( ph  ->  ( sup ( ran  ( x  e.  A  |->  B ) ,  RR* ,  <  )  <_  C  <->  A. x  e.  A  B  <_  C ) )
 
Theoremuzssre2 39633 An upper set of integers is a subset of the Reals. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  Z  =  ( ZZ>= `  M )   =>    |-  Z  C_ 
 RR
 
Theoremuzssd 39634 Subset relationship for two sets of upper integers. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  ( ph  ->  N  e.  ( ZZ>=
 `  M ) )   =>    |-  ( ph  ->  ( ZZ>= `  N )  C_  ( ZZ>= `  M ) )
 
Theoremeluzd 39635 Membership in an upper set of integers. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ph  ->  M 
 <_  N )   =>    |-  ( ph  ->  N  e.  Z )
 
Theoremelfzd 39636 Membership in a finite set of sequential integers. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ph  ->  K  e.  ZZ )   &    |-  ( ph  ->  M  <_  K )   &    |-  ( ph  ->  K  <_  N )   =>    |-  ( ph  ->  K  e.  ( M ... N ) )
 
Theoreminfxrlbrnmpt2 39637* A member of a nonempty indexed set of reals is greater than or equal to the set's lower bound. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  F/ x ph   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  B  e.  RR* )   &    |-  ( ph  ->  C  e.  A )   &    |-  ( ph  ->  D  e.  RR* )   &    |-  ( x  =  C  ->  B  =  D )   =>    |-  ( ph  -> inf ( ran  ( x  e.  A  |->  B ) ,  RR* ,  <  )  <_  D )
 
Theoremxrre4 39638 An extended real is real iff it is not an infinty. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  ( A  e.  RR*  ->  ( A  e.  RR  <->  ( A  =/= -oo 
 /\  A  =/= +oo ) ) )
 
Theoremuz0 39639 The upper integers function applied to a non integer, is the empty set. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  ( -.  M  e.  ZZ  ->  (
 ZZ>= `  M )  =  (/) )
 
Theoremeluzelz2d 39640 A member of an upper set of integers is an integer. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  N  e.  Z )   =>    |-  ( ph  ->  N  e.  ZZ )
 
Theoreminfleinf2 39641* If any element in  B is larger or equal to an element in  A, then the infimum of  A is smaller or equal to the infimum of  B. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  F/ x ph   &    |-  F/ y ph   &    |-  ( ph  ->  A  C_  RR* )   &    |-  ( ph  ->  B  C_  RR* )   &    |-  (
 ( ph  /\  x  e.  B )  ->  E. y  e.  A  y  <_  x )   =>    |-  ( ph  -> inf ( A ,  RR* ,  <  )  <_ inf ( B ,  RR* ,  <  ) )
 
Theoremunb2ltle 39642* "Unbounded below" expressed with  < and with 
<_. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  ( A  C_  RR*  ->  ( A. w  e.  RR  E. y  e.  A  y  <  w  <->  A. x  e.  RR  E. y  e.  A  y  <_  x ) )
 
Theoremuzidd2 39643 Membership of the least member in an upper set of integers. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  ( ph  ->  M  e.  ZZ )   &    |-  Z  =  ( ZZ>= `  M )   =>    |-  ( ph  ->  M  e.  Z )
 
Theoremuzssd2 39644 Subset relationship for two sets of upper integers. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  N  e.  Z )   =>    |-  ( ph  ->  ( ZZ>=
 `  N )  C_  Z )
 
Theoremrexabslelem 39645* An indexed set of absolute values of real numbers is bounded if and only if the original values are bounded above and below. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  F/ x ph   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  B  e.  RR )   =>    |-  ( ph  ->  ( E. y  e.  RR  A. x  e.  A  ( abs `  B )  <_  y  <->  ( E. w  e.  RR  A. x  e.  A  B  <_  w  /\  E. z  e.  RR  A. x  e.  A  z 
 <_  B ) ) )
 
Theoremrexabsle 39646* An indexed set of absolute values of real numbers is bounded if and only if the original values are bounded above and below. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  F/ x ph   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  B  e.  RR )   =>    |-  ( ph  ->  ( E. y  e.  RR  A. x  e.  A  ( abs `  B )  <_  y  <->  ( E. w  e.  RR  A. x  e.  A  B  <_  w  /\  E. z  e.  RR  A. x  e.  A  z 
 <_  B ) ) )
 
Theoremallbutfiinf 39647* Given a "for all but finitely many" condition, the condition holds from  N on. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  A  =  U_ n  e.  Z  |^|_
 m  e.  ( ZZ>= `  n ) B   &    |-  ( ph  ->  X  e.  A )   &    |-  N  = inf ( { n  e.  Z  |  A. m  e.  ( ZZ>=
 `  n ) X  e.  B } ,  RR ,  <  )   =>    |-  ( ph  ->  ( N  e.  Z  /\  A. m  e.  ( ZZ>= `  N ) X  e.  B ) )
 
Theoremsupxrrernmpt 39648* The real and extended real indexed suprema match when the indexed real supremum exists. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  F/ x ph   &    |-  ( ph  ->  A  =/=  (/) )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  B  e.  RR )   &    |-  ( ph  ->  E. y  e.  RR  A. x  e.  A  B  <_  y )   =>    |-  ( ph  ->  sup ( ran  ( x  e.  A  |->  B ) ,  RR* ,  <  )  =  sup ( ran  ( x  e.  A  |->  B ) ,  RR ,  <  )
 )
 
Theoremsuprleubrnmpt 39649* The supremum of a nonempty bounded indexed set of reals is less than or equal to an upper bound. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  F/ x ph   &    |-  ( ph  ->  A  =/=  (/) )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  B  e.  RR )   &    |-  ( ph  ->  E. y  e.  RR  A. x  e.  A  B  <_  y )   &    |-  ( ph  ->  C  e.  RR )   =>    |-  ( ph  ->  ( sup ( ran  ( x  e.  A  |->  B ) ,  RR ,  <  ) 
 <_  C  <->  A. x  e.  A  B  <_  C ) )
 
Theoreminfrnmptle 39650* An indexed infimum of extended reals is smaller than another indexed infimum of extended reals, when every indexed element is smaller than the corresponding one. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  F/ x ph   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  B  e.  RR* )   &    |-  (
 ( ph  /\  x  e.  A )  ->  C  e.  RR* )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  B  <_  C )   =>    |-  ( ph  -> inf ( ran  ( x  e.  A  |->  B ) ,  RR* ,  <  )  <_ inf ( ran  ( x  e.  A  |->  C ) ,  RR* ,  <  )
 )
 
Theoreminfxrunb3 39651* The infimum of an unbounded-below set of extended reals is minus infinity. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  ( A  C_  RR*  ->  ( A. x  e.  RR  E. y  e.  A  y  <_  x  <-> inf ( A ,  RR* ,  <  )  = -oo ) )
 
Theoremuzn0d 39652 The upper integers are all nonempty. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  ( ph  ->  M  e.  ZZ )   &    |-  Z  =  ( ZZ>= `  M )   =>    |-  ( ph  ->  Z  =/= 
 (/) )
 
Theoremuzssd3 39653 Subset relationship for two sets of upper integers. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  Z  =  ( ZZ>= `  M )   =>    |-  ( N  e.  Z  ->  (
 ZZ>= `  N )  C_  Z )
 
Theoremrexabsle2 39654* An indexed set of absolute values of real numbers is bounded if and only if the original values are bounded above and below. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  F/ x ph   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  B  e.  RR )   =>    |-  ( ph  ->  ( E. y  e.  RR  A. x  e.  A  ( abs `  B )  <_  y  <->  ( E. y  e.  RR  A. x  e.  A  B  <_  y  /\  E. y  e.  RR  A. x  e.  A  y 
 <_  B ) ) )
 
Theoreminfxrunb3rnmpt 39655* The infimum of an unbounded-below set of extended reals is minus infinity. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  F/ x ph   &    |-  F/ y ph   &    |-  (
 ( ph  /\  x  e.  A )  ->  B  e.  RR* )   =>    |-  ( ph  ->  ( A. y  e.  RR  E. x  e.  A  B  <_  y  <-> inf ( ran  ( x  e.  A  |->  B ) ,  RR* ,  <  )  = -oo ) )
 
Theoremsupxrre3rnmpt 39656* The indexed supremum of a nonempty set of reals, is real if and only if it is bounded-above . (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  F/ x ph   &    |-  ( ph  ->  A  =/=  (/) )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  B  e.  RR )   =>    |-  ( ph  ->  ( sup ( ran  ( x  e.  A  |->  B ) ,  RR* ,  <  )  e.  RR  <->  E. y  e.  RR  A. x  e.  A  B  <_  y
 ) )
 
Theoremuzublem 39657* A set of reals, indexed by upper integers, is bound if and only if any upper part is bound. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  F/ j ph   &    |-  F/_ j X   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  Y  e.  RR )   &    |-  W  =  sup ( ran  (
 j  e.  ( M
 ... K )  |->  B ) ,  RR ,  <  )   &    |-  X  =  if ( W  <_  Y ,  Y ,  W )   &    |-  ( ph  ->  K  e.  Z )   &    |-  ( ( ph  /\  j  e.  Z )  ->  B  e.  RR )   &    |-  ( ph  ->  A. j  e.  ( ZZ>= `  K ) B  <_  Y )   =>    |-  ( ph  ->  E. x  e.  RR  A. j  e.  Z  B  <_  x )
 
Theoremuzub 39658* A set of reals, indexed by upper integers, is bound if and only if any upper part is bound. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  F/ j ph   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  Z  =  ( ZZ>= `  M )   &    |-  (
 ( ph  /\  j  e.  Z )  ->  B  e.  RR )   =>    |-  ( ph  ->  ( E. x  e.  RR  E. k  e.  Z  A. j  e.  ( ZZ>= `  k ) B  <_  x  <->  E. x  e.  RR  A. j  e.  Z  B  <_  x ) )
 
Theoremssrexr 39659 A subset of the reals is a subset of the extended reals (common case). (Contributed by Glauco Siliprandi, 2-Jan-2022.)
 |-  ( ph  ->  A  C_  RR )   =>    |-  ( ph  ->  A  C_  RR* )
 
Theoremsupxrmnf2 39660 Removing minus infinity from a set does not affect its supremum. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
 |-  ( A  C_  RR*  ->  sup (
 ( A  \  { -oo } ) ,  RR* ,  <  )  =  sup ( A ,  RR* ,  <  ) )
 
Theoremsupxrcli 39661 The supremum of an arbitrary set of extended reals is an extended real. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
 |-  A  C_  RR*   =>    |-  sup ( A ,  RR* ,  <  )  e.  RR*
 
Theoremuzid3 39662 Membership of the least member in an upper set of integers. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
 |-  Z  =  ( ZZ>= `  M )   =>    |-  ( N  e.  Z  ->  N  e.  ( ZZ>= `  N ) )
 
Theoreminfxrlesupxr 39663 The supremum of a nonempty set is larger than or equal to the infimum. The second condition is needed, see supxrltinfxr 39677. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
 |-  ( ph  ->  A  C_  RR* )   &    |-  ( ph  ->  A  =/=  (/) )   =>    |-  ( ph  -> inf ( A ,  RR* ,  <  ) 
 <_  sup ( A ,  RR*
 ,  <  ) )
 
Theoremxnegeqd 39664 Equality of two extended numbers with  -e in front of them. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  -e A  =  -e B )
 
Theoremxnegrecl 39665 The extended real negative of a real number is real. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
 |-  ( A  e.  RR  ->  -e A  e.  RR )
 
Theoremxnegnegi 39666 Extended real version of negneg 10331. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
 |-  A  e.  RR*   =>    |-  -e  -e A  =  A
 
Theoremxnegeqi 39667 Equality of two extended numbers with  -e in front of them. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
 |-  A  =  B   =>    |-  -e A  =  -e B
 
Theoremnfxnegd 39668 Deduction version of nfxneg 39691. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
 |-  ( ph  ->  F/_ x A )   =>    |-  ( ph  ->  F/_ x  -e A )
 
Theoremxnegnegd 39669 Extended real version of negnegd 10383. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
 |-  ( ph  ->  A  e.  RR* )   =>    |-  ( ph  ->  -e  -e A  =  A )
 
Theoremuzred 39670 An upper integer is a real number. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  A  e.  Z )   =>    |-  ( ph  ->  A  e.  RR )
 
Theoremxnegcli 39671 Closure of extended real negative. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
 |-  A  e.  RR*   =>    |-  -e A  e.  RR*
 
Theoremsupminfrnmpt 39672* The indexed supremum of a bounded-above set of reals is the negation of the indexed infimum of that set's image under negation. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
 |-  F/ x ph   &    |-  ( ph  ->  A  =/=  (/) )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  B  e.  RR )   &    |-  ( ph  ->  E. y  e.  RR  A. x  e.  A  B  <_  y )   =>    |-  ( ph  ->  sup ( ran  ( x  e.  A  |->  B ) ,  RR ,  <  )  =  -uinf ( ran  ( x  e.  A  |->  -u B ) ,  RR ,  <  )
 )
 
Theoremceilged 39673 The ceiling of a real number is greater than or equal to that number. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
 |-  ( ph  ->  A  e.  RR )   =>    |-  ( ph  ->  A  <_  ( `  A )
 )
 
Theoreminfxrpnf 39674 Adding plus infinity to a set does not affect its infimum. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
 |-  ( A  C_  RR*  -> inf ( ( A  u.  { +oo } ) ,  RR* ,  <  )  = inf ( A ,  RR*
 ,  <  ) )
 
Theoreminfxrrnmptcl 39675* The infimum of an arbitrary indexed set of extended reals is an extended real. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
 |-  F/ x ph   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  B  e.  RR* )   =>    |-  ( ph  -> inf ( ran  ( x  e.  A  |->  B ) ,  RR* ,  <  )  e.  RR* )
 
Theoremleneg2d 39676 Negative of one side of 'less than or equal to'. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   =>    |-  ( ph  ->  ( A  <_  -u B  <->  B  <_  -u A ) )
 
Theoremsupxrltinfxr 39677 The supremum of the empty set is strictly smaller than the infimum of the empty set. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
 |-  sup ( (/) ,  RR* ,  <  )  < inf ( (/) ,  RR* ,  <  )
 
Theoremmax1d 39678 A number is less than or equal to the maximum of it and another. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   =>    |-  ( ph  ->  A  <_  if ( A  <_  B ,  B ,  A ) )
 
Theoremceilcld 39679 Closure of the ceiling function. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
 |-  ( ph  ->  A  e.  RR )   =>    |-  ( ph  ->  ( `  A )  e.  ZZ )
 
Theoremsupxrleubrnmptf 39680 The supremum of a nonempty bounded indexed set of extended reals is less than or equal to an upper bound. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
 |-  F/ x ph   &    |-  F/_ x A   &    |-  F/_ x C   &    |-  ( ( ph  /\  x  e.  A )  ->  B  e.  RR* )   &    |-  ( ph  ->  C  e.  RR* )   =>    |-  ( ph  ->  ( sup ( ran  ( x  e.  A  |->  B ) ,  RR* ,  <  )  <_  C  <->  A. x  e.  A  B  <_  C ) )
 
Theoremnleltd 39681 'Not less than or equal to' implies 'grater than'. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  -.  B  <_  A )   =>    |-  ( ph  ->  A  <  B )
 
Theoremzxrd 39682 An integer is an extended real number. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
 |-  ( ph  ->  A  e.  ZZ )   =>    |-  ( ph  ->  A  e.  RR* )
 
Theoreminfxrgelbrnmpt 39683* The infimum of an indexed set of extended reals is greater than or equal to a lower bound. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
 |-  F/ x ph   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  B  e.  RR* )   &    |-  ( ph  ->  C  e.  RR* )   =>    |-  ( ph  ->  ( C  <_ inf ( ran  ( x  e.  A  |->  B ) ,  RR* ,  <  )  <->  A. x  e.  A  C  <_  B ) )
 
Theoremrphalfltd 39684 Half of a positive real is less than the original number. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
 |-  ( ph  ->  A  e.  RR+ )   =>    |-  ( ph  ->  ( A  /  2 )  <  A )
 
Theoremuzssz2 39685 An upper set of integers is a subset of all integers. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
 |-  Z  =  ( ZZ>= `  M )   =>    |-  Z  C_ 
 ZZ
 
Theorem1xr 39686  1 is an extended real number. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
 |-  1  e.  RR*
 
Theoremleneg3d 39687 Negative of one side of 'less than or equal to'. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   =>    |-  ( ph  ->  ( -u A  <_  B  <->  -u B  <_  A ) )
 
Theoremmax2d 39688 A number is less than or equal to the maximum of it and another. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   =>    |-  ( ph  ->  B  <_  if ( A  <_  B ,  B ,  A ) )
 
Theoremuzn0bi 39689 The upper integers function needs to be applied to an integer, in order to return a nonempty set. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
 |-  (
 ( ZZ>= `  M )  =/= 
 (/) 
 <->  M  e.  ZZ )
 
Theoremxnegrecl2 39690 If the extended real negative is real, then the number itself is real. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
 |-  (
 ( A  e.  RR*  /\  -e A  e.  RR )  ->  A  e.  RR )
 
Theoremnfxneg 39691 Bound-variable hypothesis builder for the negative of an extended real number. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
 |-  F/_ x A   =>    |-  F/_ x  -e A
 
Theoremuzxrd 39692 An upper integer is an extended real. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  A  e.  Z )   =>    |-  ( ph  ->  A  e.  RR* )
 
Theoreminfxrpnf2 39693 Removing plus infinity from a set does not affect its infimum. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
 |-  ( A  C_  RR*  -> inf ( ( A  \  { +oo } ) ,  RR* ,  <  )  = inf ( A ,  RR*
 ,  <  ) )
 
Theoremsupminfxr 39694* The extended real suprema of a set of reals is the extended real negative of the extended real infima of that set's image under negation. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
 |-  ( ph  ->  A  C_  RR )   =>    |-  ( ph  ->  sup ( A ,  RR* ,  <  )  =  -einf ( { x  e.  RR  |  -u x  e.  A } ,  RR* ,  <  ) )
 
Theoreminfrpgernmpt 39695* The infimum of a non empty, bounded below, indexed subset of extended reals can be approximated from above by an element of the set. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
 |-  F/ x ph   &    |-  ( ph  ->  A  =/=  (/) )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  B  e.  RR* )   &    |-  ( ph  ->  E. y  e.  RR  A. x  e.  A  y 
 <_  B )   &    |-  ( ph  ->  C  e.  RR+ )   =>    |-  ( ph  ->  E. x  e.  A  B  <_  (inf ( ran  ( x  e.  A  |->  B ) , 
 RR* ,  <  ) +e C ) )
 
Theoremxnegre 39696 An extended real is real if and only if its extended negative is real. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
 |-  ( A  e.  RR*  ->  ( A  e.  RR  <->  -e A  e.  RR ) )
 
Theoremxnegrecl2d 39697 If the extended real negative is real, then the number itself is real. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
 |-  ( ph  ->  A  e.  RR* )   &    |-  ( ph  ->  -e A  e.  RR )   =>    |-  ( ph  ->  A  e.  RR )
 
Theoremuzxr 39698 An upper integer is an extended real. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
 |-  ( A  e.  ( ZZ>= `  M )  ->  A  e.  RR* )
 
Theoremsupminfxr2 39699* The extended real suprema of a set of extended reals is the extended real negative of the extended real infima of that set's image under extended real negation. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
 |-  ( ph  ->  A  C_  RR* )   =>    |-  ( ph  ->  sup ( A ,  RR*
 ,  <  )  =  -einf ( { x  e.  RR*  |  -e
 x  e.  A } ,  RR* ,  <  )
 )
 
Theoremxnegred 39700 An extended real is real if and only if its extended negative is real. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
 |-  ( ph  ->  A  e.  RR* )   =>    |-  ( ph  ->  ( A  e.  RR  <->  -e A  e.  RR ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42551
  Copyright terms: Public domain < Previous  Next >