![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl2an3an | Structured version Visualization version Unicode version |
Description: syl3an 1368 with antecedents in standard conjunction form. (Contributed by Alan Sare, 31-Aug-2016.) |
Ref | Expression |
---|---|
syl2an3an.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
syl2an3an.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
syl2an3an.3 |
![]() ![]() ![]() ![]() ![]() ![]() |
syl2an3an.4 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
syl2an3an |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl2an3an.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | syl2an3an.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | syl2an3an.3 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
4 | syl2an3an.4 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 1, 2, 3, 4 | syl3an 1368 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 5 | 3anidm12 1383 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 386 df-3an 1039 |
This theorem is referenced by: disjxiun 4649 funcnvtp 5951 funcnvqpOLD 5953 cncongr1 15381 gausslemma2dlem2 25092 eucrctshift 27103 extwwlkfab 27223 fmtnofac2lem 41480 |
Copyright terms: Public domain | W3C validator |