MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  extwwlkfab Structured version   Visualization version   Unicode version

Theorem extwwlkfab 27223
Description: The set  ( X C N ) of closed walks (having a fixed length greater than one and starting at a fixed vertex) with the last but two vertex is identical with the first (and therefore last) vertex can be constructed from the set  ( X F ( N  -  2 ) ) of closed walks with length smaller by 2 than the fixed length appending a neighbor of the last vertex and afterwards the last vertex (which is the first vertex) itself ("walking forth and back" from the last vertex).  3  <_  N is required since for  N  =  2:  ( X F ( N  -  2 ) )  =  ( X F 0 )  =  (/), see umgrclwwlksge2 26912 stating that a closed walk of length 0 is not represented as word, at least not for an undirected simple graph. (Contributed by Alexander van der Vekens, 18-Sep-2018.) (Revised by AV, 29-May-2021.)
Hypotheses
Ref Expression
extwwlkfab.v  |-  V  =  (Vtx `  G )
extwwlkfab.f  |-  F  =  ( v  e.  V ,  n  e.  NN  |->  { w  e.  (
n ClWWalksN  G )  |  ( w `  0 )  =  v } )
extwwlkfab.c  |-  C  =  ( v  e.  V ,  n  e.  ( ZZ>=
`  2 )  |->  { w  e.  ( n ClWWalksN  G )  |  ( ( w `  0
)  =  v  /\  ( w `  (
n  -  2 ) )  =  ( w `
 0 ) ) } )
Assertion
Ref Expression
extwwlkfab  |-  ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  ->  ( X C N )  =  {
w  e.  ( N ClWWalksN  G )  |  ( ( w substr  <. 0 ,  ( N  - 
2 ) >. )  e.  ( X F ( N  -  2 ) )  /\  ( w `
 ( N  - 
1 ) )  e.  ( G NeighbVtx  X )  /\  ( w `  ( N  -  2 ) )  =  X ) } )
Distinct variable groups:    n, G, v, w    n, N, v, w    n, V, v, w    n, X, v, w
Allowed substitution hints:    C( w, v, n)    F( w, v, n)

Proof of Theorem extwwlkfab
Dummy variable  u is distinct from all other variables.
StepHypRef Expression
1 uzuzle23 11729 . . . . 5  |-  ( N  e.  ( ZZ>= `  3
)  ->  N  e.  ( ZZ>= `  2 )
)
21anim2i 593 . . . 4  |-  ( ( X  e.  V  /\  N  e.  ( ZZ>= ` 
3 ) )  -> 
( X  e.  V  /\  N  e.  ( ZZ>=
`  2 ) ) )
3 extwwlkfab.c . . . . 5  |-  C  =  ( v  e.  V ,  n  e.  ( ZZ>=
`  2 )  |->  { w  e.  ( n ClWWalksN  G )  |  ( ( w `  0
)  =  v  /\  ( w `  (
n  -  2 ) )  =  ( w `
 0 ) ) } )
43numclwwlkovg 27220 . . . 4  |-  ( ( X  e.  V  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
( X C N )  =  { w  e.  ( N ClWWalksN  G )  |  ( ( w `
 0 )  =  X  /\  ( w `
 ( N  - 
2 ) )  =  ( w `  0
) ) } )
52, 4syl 17 . . 3  |-  ( ( X  e.  V  /\  N  e.  ( ZZ>= ` 
3 ) )  -> 
( X C N )  =  { w  e.  ( N ClWWalksN  G )  |  ( ( w `
 0 )  =  X  /\  ( w `
 ( N  - 
2 ) )  =  ( w `  0
) ) } )
653adant1 1079 . 2  |-  ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  ->  ( X C N )  =  {
w  e.  ( N ClWWalksN  G )  |  ( ( w `  0
)  =  X  /\  ( w `  ( N  -  2 ) )  =  ( w `
 0 ) ) } )
7 3simpb 1059 . . . . . . . . . 10  |-  ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  ->  ( G  e. USGraph  /\  N  e.  (
ZZ>= `  3 ) ) )
87adantr 481 . . . . . . . . 9  |-  ( ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  /\  w  e.  ( N ClWWalksN  G ) )  ->  ( G  e. USGraph  /\  N  e.  ( ZZ>=
`  3 ) ) )
9 simpr 477 . . . . . . . . 9  |-  ( ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  /\  w  e.  ( N ClWWalksN  G ) )  ->  w  e.  ( N ClWWalksN  G ) )
10 simpr 477 . . . . . . . . 9  |-  ( ( ( w `  0
)  =  X  /\  ( w `  ( N  -  2 ) )  =  ( w `
 0 ) )  ->  ( w `  ( N  -  2
) )  =  ( w `  0 ) )
11 extwwlkfablem2 27210 . . . . . . . . 9  |-  ( ( ( G  e. USGraph  /\  N  e.  ( ZZ>= `  3 )
)  /\  w  e.  ( N ClWWalksN  G )  /\  ( w `  ( N  -  2 ) )  =  ( w `
 0 ) )  ->  ( w substr  <. 0 ,  ( N  - 
2 ) >. )  e.  ( ( N  - 
2 ) ClWWalksN  G )
)
128, 9, 10, 11syl2an3an 1386 . . . . . . . 8  |-  ( ( ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>=
`  3 ) )  /\  w  e.  ( N ClWWalksN  G ) )  /\  ( ( w ` 
0 )  =  X  /\  ( w `  ( N  -  2
) )  =  ( w `  0 ) ) )  ->  (
w substr  <. 0 ,  ( N  -  2 )
>. )  e.  (
( N  -  2 ) ClWWalksN  G ) )
13 simpl 473 . . . . . . . . 9  |-  ( ( ( w `  0
)  =  X  /\  ( w `  ( N  -  2 ) )  =  ( w `
 0 ) )  ->  ( w ` 
0 )  =  X )
1413adantl 482 . . . . . . . 8  |-  ( ( ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>=
`  3 ) )  /\  w  e.  ( N ClWWalksN  G ) )  /\  ( ( w ` 
0 )  =  X  /\  ( w `  ( N  -  2
) )  =  ( w `  0 ) ) )  ->  (
w `  0 )  =  X )
1512, 14jca 554 . . . . . . 7  |-  ( ( ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>=
`  3 ) )  /\  w  e.  ( N ClWWalksN  G ) )  /\  ( ( w ` 
0 )  =  X  /\  ( w `  ( N  -  2
) )  =  ( w `  0 ) ) )  ->  (
( w substr  <. 0 ,  ( N  -  2 ) >. )  e.  ( ( N  -  2 ) ClWWalksN  G )  /\  (
w `  0 )  =  X ) )
161anim2i 593 . . . . . . . . . . 11  |-  ( ( G  e. USGraph  /\  N  e.  ( ZZ>= `  3 )
)  ->  ( G  e. USGraph  /\  N  e.  (
ZZ>= `  2 ) ) )
17163adant2 1080 . . . . . . . . . 10  |-  ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  ->  ( G  e. USGraph  /\  N  e.  (
ZZ>= `  2 ) ) )
1817adantr 481 . . . . . . . . 9  |-  ( ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  /\  w  e.  ( N ClWWalksN  G ) )  ->  ( G  e. USGraph  /\  N  e.  ( ZZ>=
`  2 ) ) )
19 extwwlkfablem1 27207 . . . . . . . . 9  |-  ( ( ( G  e. USGraph  /\  N  e.  ( ZZ>= `  2 )
)  /\  w  e.  ( N ClWWalksN  G )  /\  ( w `  ( N  -  2 ) )  =  ( w `
 0 ) )  ->  ( w `  ( N  -  1
) )  e.  ( G NeighbVtx  ( w `  0
) ) )
2018, 9, 10, 19syl2an3an 1386 . . . . . . . 8  |-  ( ( ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>=
`  3 ) )  /\  w  e.  ( N ClWWalksN  G ) )  /\  ( ( w ` 
0 )  =  X  /\  ( w `  ( N  -  2
) )  =  ( w `  0 ) ) )  ->  (
w `  ( N  -  1 ) )  e.  ( G NeighbVtx  ( w `
 0 ) ) )
21 oveq2 6658 . . . . . . . . . . 11  |-  ( X  =  ( w ` 
0 )  ->  ( G NeighbVtx  X )  =  ( G NeighbVtx  ( w `  0
) ) )
2221eqcoms 2630 . . . . . . . . . 10  |-  ( ( w `  0 )  =  X  ->  ( G NeighbVtx  X )  =  ( G NeighbVtx  ( w `  0
) ) )
2322adantr 481 . . . . . . . . 9  |-  ( ( ( w `  0
)  =  X  /\  ( w `  ( N  -  2 ) )  =  ( w `
 0 ) )  ->  ( G NeighbVtx  X )  =  ( G NeighbVtx  ( w `
 0 ) ) )
2423adantl 482 . . . . . . . 8  |-  ( ( ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>=
`  3 ) )  /\  w  e.  ( N ClWWalksN  G ) )  /\  ( ( w ` 
0 )  =  X  /\  ( w `  ( N  -  2
) )  =  ( w `  0 ) ) )  ->  ( G NeighbVtx  X )  =  ( G NeighbVtx  ( w `  0
) ) )
2520, 24eleqtrrd 2704 . . . . . . 7  |-  ( ( ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>=
`  3 ) )  /\  w  e.  ( N ClWWalksN  G ) )  /\  ( ( w ` 
0 )  =  X  /\  ( w `  ( N  -  2
) )  =  ( w `  0 ) ) )  ->  (
w `  ( N  -  1 ) )  e.  ( G NeighbVtx  X ) )
2610, 13eqtrd 2656 . . . . . . . 8  |-  ( ( ( w `  0
)  =  X  /\  ( w `  ( N  -  2 ) )  =  ( w `
 0 ) )  ->  ( w `  ( N  -  2
) )  =  X )
2726adantl 482 . . . . . . 7  |-  ( ( ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>=
`  3 ) )  /\  w  e.  ( N ClWWalksN  G ) )  /\  ( ( w ` 
0 )  =  X  /\  ( w `  ( N  -  2
) )  =  ( w `  0 ) ) )  ->  (
w `  ( N  -  2 ) )  =  X )
2815, 25, 273jca 1242 . . . . . 6  |-  ( ( ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>=
`  3 ) )  /\  w  e.  ( N ClWWalksN  G ) )  /\  ( ( w ` 
0 )  =  X  /\  ( w `  ( N  -  2
) )  =  ( w `  0 ) ) )  ->  (
( ( w substr  <. 0 ,  ( N  - 
2 ) >. )  e.  ( ( N  - 
2 ) ClWWalksN  G )  /\  ( w `  0
)  =  X )  /\  ( w `  ( N  -  1
) )  e.  ( G NeighbVtx  X )  /\  (
w `  ( N  -  2 ) )  =  X ) )
2928ex 450 . . . . 5  |-  ( ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  /\  w  e.  ( N ClWWalksN  G ) )  ->  ( ( ( w `  0 )  =  X  /\  (
w `  ( N  -  2 ) )  =  ( w ` 
0 ) )  -> 
( ( ( w substr  <. 0 ,  ( N  -  2 ) >.
)  e.  ( ( N  -  2 ) ClWWalksN  G )  /\  (
w `  0 )  =  X )  /\  (
w `  ( N  -  1 ) )  e.  ( G NeighbVtx  X )  /\  ( w `  ( N  -  2
) )  =  X ) ) )
30 simpl 473 . . . . . . . . . 10  |-  ( ( ( w `  0
)  =  X  /\  ( w `  ( N  -  2 ) )  =  X )  ->  ( w ` 
0 )  =  X )
31 simpr 477 . . . . . . . . . . 11  |-  ( ( ( w `  0
)  =  X  /\  ( w `  ( N  -  2 ) )  =  X )  ->  ( w `  ( N  -  2
) )  =  X )
3230eqcomd 2628 . . . . . . . . . . 11  |-  ( ( ( w `  0
)  =  X  /\  ( w `  ( N  -  2 ) )  =  X )  ->  X  =  ( w `  0 ) )
3331, 32eqtrd 2656 . . . . . . . . . 10  |-  ( ( ( w `  0
)  =  X  /\  ( w `  ( N  -  2 ) )  =  X )  ->  ( w `  ( N  -  2
) )  =  ( w `  0 ) )
3430, 33jca 554 . . . . . . . . 9  |-  ( ( ( w `  0
)  =  X  /\  ( w `  ( N  -  2 ) )  =  X )  ->  ( ( w `
 0 )  =  X  /\  ( w `
 ( N  - 
2 ) )  =  ( w `  0
) ) )
3534ex 450 . . . . . . . 8  |-  ( ( w `  0 )  =  X  ->  (
( w `  ( N  -  2 ) )  =  X  -> 
( ( w ` 
0 )  =  X  /\  ( w `  ( N  -  2
) )  =  ( w `  0 ) ) ) )
3635a1d 25 . . . . . . 7  |-  ( ( w `  0 )  =  X  ->  (
( w `  ( N  -  1 ) )  e.  ( G NeighbVtx  X )  ->  (
( w `  ( N  -  2 ) )  =  X  -> 
( ( w ` 
0 )  =  X  /\  ( w `  ( N  -  2
) )  =  ( w `  0 ) ) ) ) )
3736adantl 482 . . . . . 6  |-  ( ( ( w substr  <. 0 ,  ( N  - 
2 ) >. )  e.  ( ( N  - 
2 ) ClWWalksN  G )  /\  ( w `  0
)  =  X )  ->  ( ( w `
 ( N  - 
1 ) )  e.  ( G NeighbVtx  X )  ->  ( ( w `  ( N  -  2
) )  =  X  ->  ( ( w `
 0 )  =  X  /\  ( w `
 ( N  - 
2 ) )  =  ( w `  0
) ) ) ) )
38373imp 1256 . . . . 5  |-  ( ( ( ( w substr  <. 0 ,  ( N  - 
2 ) >. )  e.  ( ( N  - 
2 ) ClWWalksN  G )  /\  ( w `  0
)  =  X )  /\  ( w `  ( N  -  1
) )  e.  ( G NeighbVtx  X )  /\  (
w `  ( N  -  2 ) )  =  X )  -> 
( ( w ` 
0 )  =  X  /\  ( w `  ( N  -  2
) )  =  ( w `  0 ) ) )
3929, 38impbid1 215 . . . 4  |-  ( ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  /\  w  e.  ( N ClWWalksN  G ) )  ->  ( ( ( w `  0 )  =  X  /\  (
w `  ( N  -  2 ) )  =  ( w ` 
0 ) )  <->  ( (
( w substr  <. 0 ,  ( N  -  2 ) >. )  e.  ( ( N  -  2 ) ClWWalksN  G )  /\  (
w `  0 )  =  X )  /\  (
w `  ( N  -  1 ) )  e.  ( G NeighbVtx  X )  /\  ( w `  ( N  -  2
) )  =  X ) ) )
40 ige3m2fz 12365 . . . . . . . . . . . . . . 15  |-  ( N  e.  ( ZZ>= `  3
)  ->  ( N  -  2 )  e.  ( 1 ... N
) )
41 oveq2 6658 . . . . . . . . . . . . . . . 16  |-  ( (
# `  w )  =  N  ->  ( 1 ... ( # `  w
) )  =  ( 1 ... N ) )
4241eleq2d 2687 . . . . . . . . . . . . . . 15  |-  ( (
# `  w )  =  N  ->  ( ( N  -  2 )  e.  ( 1 ... ( # `  w
) )  <->  ( N  -  2 )  e.  ( 1 ... N
) ) )
4340, 42syl5ibr 236 . . . . . . . . . . . . . 14  |-  ( (
# `  w )  =  N  ->  ( N  e.  ( ZZ>= `  3
)  ->  ( N  -  2 )  e.  ( 1 ... ( # `
 w ) ) ) )
4443adantl 482 . . . . . . . . . . . . 13  |-  ( ( w  e. Word  V  /\  ( # `  w )  =  N )  -> 
( N  e.  (
ZZ>= `  3 )  -> 
( N  -  2 )  e.  ( 1 ... ( # `  w
) ) ) )
45 simpl 473 . . . . . . . . . . . . 13  |-  ( ( w  e. Word  V  /\  ( # `  w )  =  N )  ->  w  e. Word  V )
4644, 45jctild 566 . . . . . . . . . . . 12  |-  ( ( w  e. Word  V  /\  ( # `  w )  =  N )  -> 
( N  e.  (
ZZ>= `  3 )  -> 
( w  e. Word  V  /\  ( N  -  2 )  e.  ( 1 ... ( # `  w
) ) ) ) )
47 extwwlkfab.v . . . . . . . . . . . . 13  |-  V  =  (Vtx `  G )
4847clwwlknbp 26885 . . . . . . . . . . . 12  |-  ( w  e.  ( N ClWWalksN  G )  ->  ( w  e. Word  V  /\  ( # `  w
)  =  N ) )
4946, 48syl11 33 . . . . . . . . . . 11  |-  ( N  e.  ( ZZ>= `  3
)  ->  ( w  e.  ( N ClWWalksN  G )  ->  ( w  e. Word  V  /\  ( N  -  2 )  e.  ( 1 ... ( # `  w
) ) ) ) )
50493ad2ant3 1084 . . . . . . . . . 10  |-  ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  ->  ( w  e.  ( N ClWWalksN  G )  ->  ( w  e. Word  V  /\  ( N  -  2 )  e.  ( 1 ... ( # `  w
) ) ) ) )
5150imp 445 . . . . . . . . 9  |-  ( ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  /\  w  e.  ( N ClWWalksN  G ) )  ->  ( w  e. Word  V  /\  ( N  - 
2 )  e.  ( 1 ... ( # `  w ) ) ) )
52 swrd0fv0 13440 . . . . . . . . 9  |-  ( ( w  e. Word  V  /\  ( N  -  2
)  e.  ( 1 ... ( # `  w
) ) )  -> 
( ( w substr  <. 0 ,  ( N  - 
2 ) >. ) `  0 )  =  ( w `  0
) )
5351, 52syl 17 . . . . . . . 8  |-  ( ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  /\  w  e.  ( N ClWWalksN  G ) )  ->  ( ( w substr  <. 0 ,  ( N  -  2 ) >.
) `  0 )  =  ( w ` 
0 ) )
5453eqcomd 2628 . . . . . . 7  |-  ( ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  /\  w  e.  ( N ClWWalksN  G ) )  ->  ( w ` 
0 )  =  ( ( w substr  <. 0 ,  ( N  - 
2 ) >. ) `  0 ) )
5554eqeq1d 2624 . . . . . 6  |-  ( ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  /\  w  e.  ( N ClWWalksN  G ) )  ->  ( ( w `
 0 )  =  X  <->  ( ( w substr  <. 0 ,  ( N  -  2 ) >.
) `  0 )  =  X ) )
5655anbi2d 740 . . . . 5  |-  ( ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  /\  w  e.  ( N ClWWalksN  G ) )  ->  ( ( ( w substr  <. 0 ,  ( N  -  2 )
>. )  e.  (
( N  -  2 ) ClWWalksN  G )  /\  (
w `  0 )  =  X )  <->  ( (
w substr  <. 0 ,  ( N  -  2 )
>. )  e.  (
( N  -  2 ) ClWWalksN  G )  /\  (
( w substr  <. 0 ,  ( N  -  2 ) >. ) `  0
)  =  X ) ) )
57563anbi1d 1403 . . . 4  |-  ( ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  /\  w  e.  ( N ClWWalksN  G ) )  ->  ( ( ( ( w substr  <. 0 ,  ( N  - 
2 ) >. )  e.  ( ( N  - 
2 ) ClWWalksN  G )  /\  ( w `  0
)  =  X )  /\  ( w `  ( N  -  1
) )  e.  ( G NeighbVtx  X )  /\  (
w `  ( N  -  2 ) )  =  X )  <->  ( (
( w substr  <. 0 ,  ( N  -  2 ) >. )  e.  ( ( N  -  2 ) ClWWalksN  G )  /\  (
( w substr  <. 0 ,  ( N  -  2 ) >. ) `  0
)  =  X )  /\  ( w `  ( N  -  1
) )  e.  ( G NeighbVtx  X )  /\  (
w `  ( N  -  2 ) )  =  X ) ) )
58 uz3m2nn 11731 . . . . . . . . . . 11  |-  ( N  e.  ( ZZ>= `  3
)  ->  ( N  -  2 )  e.  NN )
5958anim2i 593 . . . . . . . . . 10  |-  ( ( X  e.  V  /\  N  e.  ( ZZ>= ` 
3 ) )  -> 
( X  e.  V  /\  ( N  -  2 )  e.  NN ) )
60593adant1 1079 . . . . . . . . 9  |-  ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  ->  ( X  e.  V  /\  ( N  -  2 )  e.  NN ) )
61 extwwlkfab.f . . . . . . . . . . 11  |-  F  =  ( v  e.  V ,  n  e.  NN  |->  { w  e.  (
n ClWWalksN  G )  |  ( w `  0 )  =  v } )
6261numclwwlkovf 27213 . . . . . . . . . 10  |-  ( ( X  e.  V  /\  ( N  -  2
)  e.  NN )  ->  ( X F ( N  -  2 ) )  =  {
w  e.  ( ( N  -  2 ) ClWWalksN  G )  |  ( w `  0 )  =  X } )
6362eleq2d 2687 . . . . . . . . 9  |-  ( ( X  e.  V  /\  ( N  -  2
)  e.  NN )  ->  ( ( w substr  <. 0 ,  ( N  -  2 ) >.
)  e.  ( X F ( N  - 
2 ) )  <->  ( w substr  <.
0 ,  ( N  -  2 ) >.
)  e.  { w  e.  ( ( N  - 
2 ) ClWWalksN  G )  |  ( w ` 
0 )  =  X } ) )
6460, 63syl 17 . . . . . . . 8  |-  ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  ->  ( (
w substr  <. 0 ,  ( N  -  2 )
>. )  e.  ( X F ( N  - 
2 ) )  <->  ( w substr  <.
0 ,  ( N  -  2 ) >.
)  e.  { w  e.  ( ( N  - 
2 ) ClWWalksN  G )  |  ( w ` 
0 )  =  X } ) )
65 fveq1 6190 . . . . . . . . . 10  |-  ( u  =  ( w substr  <. 0 ,  ( N  - 
2 ) >. )  ->  ( u `  0
)  =  ( ( w substr  <. 0 ,  ( N  -  2 )
>. ) `  0 ) )
6665eqeq1d 2624 . . . . . . . . 9  |-  ( u  =  ( w substr  <. 0 ,  ( N  - 
2 ) >. )  ->  ( ( u ` 
0 )  =  X  <-> 
( ( w substr  <. 0 ,  ( N  - 
2 ) >. ) `  0 )  =  X ) )
67 fveq1 6190 . . . . . . . . . . 11  |-  ( w  =  u  ->  (
w `  0 )  =  ( u ` 
0 ) )
6867eqeq1d 2624 . . . . . . . . . 10  |-  ( w  =  u  ->  (
( w `  0
)  =  X  <->  ( u `  0 )  =  X ) )
6968cbvrabv 3199 . . . . . . . . 9  |-  { w  e.  ( ( N  - 
2 ) ClWWalksN  G )  |  ( w ` 
0 )  =  X }  =  { u  e.  ( ( N  - 
2 ) ClWWalksN  G )  |  ( u ` 
0 )  =  X }
7066, 69elrab2 3366 . . . . . . . 8  |-  ( ( w substr  <. 0 ,  ( N  -  2 )
>. )  e.  { w  e.  ( ( N  - 
2 ) ClWWalksN  G )  |  ( w ` 
0 )  =  X }  <->  ( ( w substr  <. 0 ,  ( N  -  2 ) >.
)  e.  ( ( N  -  2 ) ClWWalksN  G )  /\  (
( w substr  <. 0 ,  ( N  -  2 ) >. ) `  0
)  =  X ) )
7164, 70syl6bb 276 . . . . . . 7  |-  ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  ->  ( (
w substr  <. 0 ,  ( N  -  2 )
>. )  e.  ( X F ( N  - 
2 ) )  <->  ( (
w substr  <. 0 ,  ( N  -  2 )
>. )  e.  (
( N  -  2 ) ClWWalksN  G )  /\  (
( w substr  <. 0 ,  ( N  -  2 ) >. ) `  0
)  =  X ) ) )
72713anbi1d 1403 . . . . . 6  |-  ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  ->  ( (
( w substr  <. 0 ,  ( N  -  2 ) >. )  e.  ( X F ( N  -  2 ) )  /\  ( w `  ( N  -  1
) )  e.  ( G NeighbVtx  X )  /\  (
w `  ( N  -  2 ) )  =  X )  <->  ( (
( w substr  <. 0 ,  ( N  -  2 ) >. )  e.  ( ( N  -  2 ) ClWWalksN  G )  /\  (
( w substr  <. 0 ,  ( N  -  2 ) >. ) `  0
)  =  X )  /\  ( w `  ( N  -  1
) )  e.  ( G NeighbVtx  X )  /\  (
w `  ( N  -  2 ) )  =  X ) ) )
7372bicomd 213 . . . . 5  |-  ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  ->  ( (
( ( w substr  <. 0 ,  ( N  - 
2 ) >. )  e.  ( ( N  - 
2 ) ClWWalksN  G )  /\  ( ( w substr  <. 0 ,  ( N  - 
2 ) >. ) `  0 )  =  X )  /\  (
w `  ( N  -  1 ) )  e.  ( G NeighbVtx  X )  /\  ( w `  ( N  -  2
) )  =  X )  <->  ( ( w substr  <. 0 ,  ( N  -  2 ) >.
)  e.  ( X F ( N  - 
2 ) )  /\  ( w `  ( N  -  1 ) )  e.  ( G NeighbVtx  X )  /\  (
w `  ( N  -  2 ) )  =  X ) ) )
7473adantr 481 . . . 4  |-  ( ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  /\  w  e.  ( N ClWWalksN  G ) )  ->  ( ( ( ( w substr  <. 0 ,  ( N  - 
2 ) >. )  e.  ( ( N  - 
2 ) ClWWalksN  G )  /\  ( ( w substr  <. 0 ,  ( N  - 
2 ) >. ) `  0 )  =  X )  /\  (
w `  ( N  -  1 ) )  e.  ( G NeighbVtx  X )  /\  ( w `  ( N  -  2
) )  =  X )  <->  ( ( w substr  <. 0 ,  ( N  -  2 ) >.
)  e.  ( X F ( N  - 
2 ) )  /\  ( w `  ( N  -  1 ) )  e.  ( G NeighbVtx  X )  /\  (
w `  ( N  -  2 ) )  =  X ) ) )
7539, 57, 743bitrd 294 . . 3  |-  ( ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  /\  w  e.  ( N ClWWalksN  G ) )  ->  ( ( ( w `  0 )  =  X  /\  (
w `  ( N  -  2 ) )  =  ( w ` 
0 ) )  <->  ( (
w substr  <. 0 ,  ( N  -  2 )
>. )  e.  ( X F ( N  - 
2 ) )  /\  ( w `  ( N  -  1 ) )  e.  ( G NeighbVtx  X )  /\  (
w `  ( N  -  2 ) )  =  X ) ) )
7675rabbidva 3188 . 2  |-  ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  ->  { w  e.  ( N ClWWalksN  G )  |  ( ( w `
 0 )  =  X  /\  ( w `
 ( N  - 
2 ) )  =  ( w `  0
) ) }  =  { w  e.  ( N ClWWalksN  G )  |  ( ( w substr  <. 0 ,  ( N  - 
2 ) >. )  e.  ( X F ( N  -  2 ) )  /\  ( w `
 ( N  - 
1 ) )  e.  ( G NeighbVtx  X )  /\  ( w `  ( N  -  2 ) )  =  X ) } )
776, 76eqtrd 2656 1  |-  ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  ->  ( X C N )  =  {
w  e.  ( N ClWWalksN  G )  |  ( ( w substr  <. 0 ,  ( N  - 
2 ) >. )  e.  ( X F ( N  -  2 ) )  /\  ( w `
 ( N  - 
1 ) )  e.  ( G NeighbVtx  X )  /\  ( w `  ( N  -  2 ) )  =  X ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   {crab 2916   <.cop 4183   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   0cc0 9936   1c1 9937    - cmin 10266   NNcn 11020   2c2 11070   3c3 11071   ZZ>=cuz 11687   ...cfz 12326   #chash 13117  Word cword 13291   substr csubstr 13295  Vtxcvtx 25874   USGraph cusgr 26044   NeighbVtx cnbgr 26224   ClWWalksN cclwwlksn 26876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-lsw 13300  df-substr 13303  df-edg 25940  df-upgr 25977  df-umgr 25978  df-usgr 26046  df-nbgr 26228  df-wwlks 26722  df-wwlksn 26723  df-clwwlks 26877  df-clwwlksn 26878
This theorem is referenced by:  numclwlk1lem2foa  27224  numclwlk1lem2f  27225
  Copyright terms: Public domain W3C validator