MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcnvqpOLD Structured version   Visualization version   Unicode version

Theorem funcnvqpOLD 5953
Description: Obsolete proof of funcnvqp 5952 as of 14-Jul-2021. (Contributed by AV, 23-Jan-2021.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
funcnvqpOLD  |-  ( ( ( ( A  e.  U  /\  C  e.  V )  /\  ( E  e.  W  /\  G  e.  T )
)  /\  ( ( B  =/=  D  /\  B  =/=  F  /\  B  =/= 
H )  /\  ( D  =/=  F  /\  D  =/=  H )  /\  F  =/=  H ) )  ->  Fun  `' ( { <. A ,  B >. ,  <. C ,  D >. }  u.  {
<. E ,  F >. , 
<. G ,  H >. } ) )

Proof of Theorem funcnvqpOLD
StepHypRef Expression
1 simpl 473 . . . . 5  |-  ( ( A  e.  U  /\  C  e.  V )  ->  A  e.  U )
21adantr 481 . . . 4  |-  ( ( ( A  e.  U  /\  C  e.  V
)  /\  ( E  e.  W  /\  G  e.  T ) )  ->  A  e.  U )
3 simpr 477 . . . . 5  |-  ( ( A  e.  U  /\  C  e.  V )  ->  C  e.  V )
43adantr 481 . . . 4  |-  ( ( ( A  e.  U  /\  C  e.  V
)  /\  ( E  e.  W  /\  G  e.  T ) )  ->  C  e.  V )
5 simp11 1091 . . . 4  |-  ( ( ( B  =/=  D  /\  B  =/=  F  /\  B  =/=  H
)  /\  ( D  =/=  F  /\  D  =/= 
H )  /\  F  =/=  H )  ->  B  =/=  D )
6 funcnvpr 5950 . . . 4  |-  ( ( A  e.  U  /\  C  e.  V  /\  B  =/=  D )  ->  Fun  `' { <. A ,  B >. ,  <. C ,  D >. } )
72, 4, 5, 6syl2an3an 1386 . . 3  |-  ( ( ( ( A  e.  U  /\  C  e.  V )  /\  ( E  e.  W  /\  G  e.  T )
)  /\  ( ( B  =/=  D  /\  B  =/=  F  /\  B  =/= 
H )  /\  ( D  =/=  F  /\  D  =/=  H )  /\  F  =/=  H ) )  ->  Fun  `' { <. A ,  B >. ,  <. C ,  D >. } )
8 simpl 473 . . . . 5  |-  ( ( E  e.  W  /\  G  e.  T )  ->  E  e.  W )
98adantl 482 . . . 4  |-  ( ( ( A  e.  U  /\  C  e.  V
)  /\  ( E  e.  W  /\  G  e.  T ) )  ->  E  e.  W )
10 simpr 477 . . . . 5  |-  ( ( E  e.  W  /\  G  e.  T )  ->  G  e.  T )
1110adantl 482 . . . 4  |-  ( ( ( A  e.  U  /\  C  e.  V
)  /\  ( E  e.  W  /\  G  e.  T ) )  ->  G  e.  T )
12 simp3 1063 . . . 4  |-  ( ( ( B  =/=  D  /\  B  =/=  F  /\  B  =/=  H
)  /\  ( D  =/=  F  /\  D  =/= 
H )  /\  F  =/=  H )  ->  F  =/=  H )
13 funcnvpr 5950 . . . 4  |-  ( ( E  e.  W  /\  G  e.  T  /\  F  =/=  H )  ->  Fun  `' { <. E ,  F >. ,  <. G ,  H >. } )
149, 11, 12, 13syl2an3an 1386 . . 3  |-  ( ( ( ( A  e.  U  /\  C  e.  V )  /\  ( E  e.  W  /\  G  e.  T )
)  /\  ( ( B  =/=  D  /\  B  =/=  F  /\  B  =/= 
H )  /\  ( D  =/=  F  /\  D  =/=  H )  /\  F  =/=  H ) )  ->  Fun  `' { <. E ,  F >. ,  <. G ,  H >. } )
15 df-rn 5125 . . . . . 6  |-  ran  { <. A ,  B >. , 
<. C ,  D >. }  =  dom  `' { <. A ,  B >. , 
<. C ,  D >. }
16 rnpropg 5615 . . . . . 6  |-  ( ( A  e.  U  /\  C  e.  V )  ->  ran  { <. A ,  B >. ,  <. C ,  D >. }  =  { B ,  D }
)
1715, 16syl5eqr 2670 . . . . 5  |-  ( ( A  e.  U  /\  C  e.  V )  ->  dom  `' { <. A ,  B >. ,  <. C ,  D >. }  =  { B ,  D }
)
18 df-rn 5125 . . . . . 6  |-  ran  { <. E ,  F >. , 
<. G ,  H >. }  =  dom  `' { <. E ,  F >. , 
<. G ,  H >. }
19 rnpropg 5615 . . . . . 6  |-  ( ( E  e.  W  /\  G  e.  T )  ->  ran  { <. E ,  F >. ,  <. G ,  H >. }  =  { F ,  H }
)
2018, 19syl5eqr 2670 . . . . 5  |-  ( ( E  e.  W  /\  G  e.  T )  ->  dom  `' { <. E ,  F >. ,  <. G ,  H >. }  =  { F ,  H }
)
2117, 20ineqan12d 3816 . . . 4  |-  ( ( ( A  e.  U  /\  C  e.  V
)  /\  ( E  e.  W  /\  G  e.  T ) )  -> 
( dom  `' { <. A ,  B >. ,  <. C ,  D >. }  i^i  dom  `' { <. E ,  F >. ,  <. G ,  H >. } )  =  ( { B ,  D }  i^i  { F ,  H } ) )
22 simp2 1062 . . . . . . 7  |-  ( ( B  =/=  D  /\  B  =/=  F  /\  B  =/=  H )  ->  B  =/=  F )
23 simpl 473 . . . . . . 7  |-  ( ( D  =/=  F  /\  D  =/=  H )  ->  D  =/=  F )
2422, 23anim12i 590 . . . . . 6  |-  ( ( ( B  =/=  D  /\  B  =/=  F  /\  B  =/=  H
)  /\  ( D  =/=  F  /\  D  =/= 
H ) )  -> 
( B  =/=  F  /\  D  =/=  F
) )
25243adant3 1081 . . . . 5  |-  ( ( ( B  =/=  D  /\  B  =/=  F  /\  B  =/=  H
)  /\  ( D  =/=  F  /\  D  =/= 
H )  /\  F  =/=  H )  ->  ( B  =/=  F  /\  D  =/=  F ) )
26 simp3 1063 . . . . . . 7  |-  ( ( B  =/=  D  /\  B  =/=  F  /\  B  =/=  H )  ->  B  =/=  H )
27 simpr 477 . . . . . . 7  |-  ( ( D  =/=  F  /\  D  =/=  H )  ->  D  =/=  H )
2826, 27anim12i 590 . . . . . 6  |-  ( ( ( B  =/=  D  /\  B  =/=  F  /\  B  =/=  H
)  /\  ( D  =/=  F  /\  D  =/= 
H ) )  -> 
( B  =/=  H  /\  D  =/=  H
) )
29283adant3 1081 . . . . 5  |-  ( ( ( B  =/=  D  /\  B  =/=  F  /\  B  =/=  H
)  /\  ( D  =/=  F  /\  D  =/= 
H )  /\  F  =/=  H )  ->  ( B  =/=  H  /\  D  =/=  H ) )
30 disjpr2 4248 . . . . 5  |-  ( ( ( B  =/=  F  /\  D  =/=  F
)  /\  ( B  =/=  H  /\  D  =/= 
H ) )  -> 
( { B ,  D }  i^i  { F ,  H } )  =  (/) )
3125, 29, 30syl2anc 693 . . . 4  |-  ( ( ( B  =/=  D  /\  B  =/=  F  /\  B  =/=  H
)  /\  ( D  =/=  F  /\  D  =/= 
H )  /\  F  =/=  H )  ->  ( { B ,  D }  i^i  { F ,  H } )  =  (/) )
3221, 31sylan9eq 2676 . . 3  |-  ( ( ( ( A  e.  U  /\  C  e.  V )  /\  ( E  e.  W  /\  G  e.  T )
)  /\  ( ( B  =/=  D  /\  B  =/=  F  /\  B  =/= 
H )  /\  ( D  =/=  F  /\  D  =/=  H )  /\  F  =/=  H ) )  -> 
( dom  `' { <. A ,  B >. ,  <. C ,  D >. }  i^i  dom  `' { <. E ,  F >. ,  <. G ,  H >. } )  =  (/) )
33 funun 5932 . . 3  |-  ( ( ( Fun  `' { <. A ,  B >. , 
<. C ,  D >. }  /\  Fun  `' { <. E ,  F >. , 
<. G ,  H >. } )  /\  ( dom  `' { <. A ,  B >. ,  <. C ,  D >. }  i^i  dom  `' { <. E ,  F >. ,  <. G ,  H >. } )  =  (/) )  ->  Fun  ( `' { <. A ,  B >. ,  <. C ,  D >. }  u.  `' { <. E ,  F >. , 
<. G ,  H >. } ) )
347, 14, 32, 33syl21anc 1325 . 2  |-  ( ( ( ( A  e.  U  /\  C  e.  V )  /\  ( E  e.  W  /\  G  e.  T )
)  /\  ( ( B  =/=  D  /\  B  =/=  F  /\  B  =/= 
H )  /\  ( D  =/=  F  /\  D  =/=  H )  /\  F  =/=  H ) )  ->  Fun  ( `' { <. A ,  B >. ,  <. C ,  D >. }  u.  `' { <. E ,  F >. ,  <. G ,  H >. } ) )
35 cnvun 5538 . . 3  |-  `' ( { <. A ,  B >. ,  <. C ,  D >. }  u.  { <. E ,  F >. ,  <. G ,  H >. } )  =  ( `' { <. A ,  B >. , 
<. C ,  D >. }  u.  `' { <. E ,  F >. ,  <. G ,  H >. } )
3635funeqi 5909 . 2  |-  ( Fun  `' ( { <. A ,  B >. ,  <. C ,  D >. }  u.  {
<. E ,  F >. , 
<. G ,  H >. } )  <->  Fun  ( `' { <. A ,  B >. , 
<. C ,  D >. }  u.  `' { <. E ,  F >. ,  <. G ,  H >. } ) )
3734, 36sylibr 224 1  |-  ( ( ( ( A  e.  U  /\  C  e.  V )  /\  ( E  e.  W  /\  G  e.  T )
)  /\  ( ( B  =/=  D  /\  B  =/=  F  /\  B  =/= 
H )  /\  ( D  =/=  F  /\  D  =/=  H )  /\  F  =/=  H ) )  ->  Fun  `' ( { <. A ,  B >. ,  <. C ,  D >. }  u.  {
<. E ,  F >. , 
<. G ,  H >. } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794    u. cun 3572    i^i cin 3573   (/)c0 3915   {cpr 4179   <.cop 4183   `'ccnv 5113   dom cdm 5114   ran crn 5115   Fun wfun 5882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-fun 5890
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator