| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funcnvqpOLD | Structured version Visualization version Unicode version | ||
| Description: Obsolete proof of funcnvqp 5952 as of 14-Jul-2021. (Contributed by AV, 23-Jan-2021.) (New usage is discouraged.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| funcnvqpOLD |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 473 |
. . . . 5
| |
| 2 | 1 | adantr 481 |
. . . 4
|
| 3 | simpr 477 |
. . . . 5
| |
| 4 | 3 | adantr 481 |
. . . 4
|
| 5 | simp11 1091 |
. . . 4
| |
| 6 | funcnvpr 5950 |
. . . 4
| |
| 7 | 2, 4, 5, 6 | syl2an3an 1386 |
. . 3
|
| 8 | simpl 473 |
. . . . 5
| |
| 9 | 8 | adantl 482 |
. . . 4
|
| 10 | simpr 477 |
. . . . 5
| |
| 11 | 10 | adantl 482 |
. . . 4
|
| 12 | simp3 1063 |
. . . 4
| |
| 13 | funcnvpr 5950 |
. . . 4
| |
| 14 | 9, 11, 12, 13 | syl2an3an 1386 |
. . 3
|
| 15 | df-rn 5125 |
. . . . . 6
| |
| 16 | rnpropg 5615 |
. . . . . 6
| |
| 17 | 15, 16 | syl5eqr 2670 |
. . . . 5
|
| 18 | df-rn 5125 |
. . . . . 6
| |
| 19 | rnpropg 5615 |
. . . . . 6
| |
| 20 | 18, 19 | syl5eqr 2670 |
. . . . 5
|
| 21 | 17, 20 | ineqan12d 3816 |
. . . 4
|
| 22 | simp2 1062 |
. . . . . . 7
| |
| 23 | simpl 473 |
. . . . . . 7
| |
| 24 | 22, 23 | anim12i 590 |
. . . . . 6
|
| 25 | 24 | 3adant3 1081 |
. . . . 5
|
| 26 | simp3 1063 |
. . . . . . 7
| |
| 27 | simpr 477 |
. . . . . . 7
| |
| 28 | 26, 27 | anim12i 590 |
. . . . . 6
|
| 29 | 28 | 3adant3 1081 |
. . . . 5
|
| 30 | disjpr2 4248 |
. . . . 5
| |
| 31 | 25, 29, 30 | syl2anc 693 |
. . . 4
|
| 32 | 21, 31 | sylan9eq 2676 |
. . 3
|
| 33 | funun 5932 |
. . 3
| |
| 34 | 7, 14, 32, 33 | syl21anc 1325 |
. 2
|
| 35 | cnvun 5538 |
. . 3
| |
| 36 | 35 | funeqi 5909 |
. 2
|
| 37 | 34, 36 | sylibr 224 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-fun 5890 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |