MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gausslemma2dlem2 Structured version   Visualization version   Unicode version

Theorem gausslemma2dlem2 25092
Description: Lemma 2 for gausslemma2d 25099. (Contributed by AV, 4-Jul-2021.)
Hypotheses
Ref Expression
gausslemma2d.p  |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )
gausslemma2d.h  |-  H  =  ( ( P  - 
1 )  /  2
)
gausslemma2d.r  |-  R  =  ( x  e.  ( 1 ... H ) 
|->  if ( ( x  x.  2 )  < 
( P  /  2
) ,  ( x  x.  2 ) ,  ( P  -  (
x  x.  2 ) ) ) )
gausslemma2d.m  |-  M  =  ( |_ `  ( P  /  4 ) )
Assertion
Ref Expression
gausslemma2dlem2  |-  ( ph  ->  A. k  e.  ( 1 ... M ) ( R `  k
)  =  ( k  x.  2 ) )
Distinct variable groups:    x, H    x, P    ph, x    k, H    R, k    ph, k    x, M   
x, k
Allowed substitution hints:    P( k)    R( x)    M( k)

Proof of Theorem gausslemma2dlem2
StepHypRef Expression
1 gausslemma2d.r . . . 4  |-  R  =  ( x  e.  ( 1 ... H ) 
|->  if ( ( x  x.  2 )  < 
( P  /  2
) ,  ( x  x.  2 ) ,  ( P  -  (
x  x.  2 ) ) ) )
21a1i 11 . . 3  |-  ( (
ph  /\  k  e.  ( 1 ... M
) )  ->  R  =  ( x  e.  ( 1 ... H
)  |->  if ( ( x  x.  2 )  <  ( P  / 
2 ) ,  ( x  x.  2 ) ,  ( P  -  ( x  x.  2
) ) ) ) )
3 oveq1 6657 . . . . . . 7  |-  ( x  =  k  ->  (
x  x.  2 )  =  ( k  x.  2 ) )
43breq1d 4663 . . . . . 6  |-  ( x  =  k  ->  (
( x  x.  2 )  <  ( P  /  2 )  <->  ( k  x.  2 )  <  ( P  /  2 ) ) )
53oveq2d 6666 . . . . . 6  |-  ( x  =  k  ->  ( P  -  ( x  x.  2 ) )  =  ( P  -  (
k  x.  2 ) ) )
64, 3, 5ifbieq12d 4113 . . . . 5  |-  ( x  =  k  ->  if ( ( x  x.  2 )  <  ( P  /  2 ) ,  ( x  x.  2 ) ,  ( P  -  ( x  x.  2 ) ) )  =  if ( ( k  x.  2 )  <  ( P  / 
2 ) ,  ( k  x.  2 ) ,  ( P  -  ( k  x.  2 ) ) ) )
76adantl 482 . . . 4  |-  ( ( ( ph  /\  k  e.  ( 1 ... M
) )  /\  x  =  k )  ->  if ( ( x  x.  2 )  <  ( P  /  2 ) ,  ( x  x.  2 ) ,  ( P  -  ( x  x.  2 ) ) )  =  if ( ( k  x.  2 )  <  ( P  / 
2 ) ,  ( k  x.  2 ) ,  ( P  -  ( k  x.  2 ) ) ) )
8 elfz1b 12409 . . . . . . . 8  |-  ( k  e.  ( 1 ... M )  <->  ( k  e.  NN  /\  M  e.  NN  /\  k  <_  M ) )
9 nnre 11027 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  k  e.  RR )
109adantr 481 . . . . . . . . . . 11  |-  ( ( k  e.  NN  /\  M  e.  NN )  ->  k  e.  RR )
11 nnre 11027 . . . . . . . . . . . 12  |-  ( M  e.  NN  ->  M  e.  RR )
1211adantl 482 . . . . . . . . . . 11  |-  ( ( k  e.  NN  /\  M  e.  NN )  ->  M  e.  RR )
13 2re 11090 . . . . . . . . . . . . 13  |-  2  e.  RR
14 2pos 11112 . . . . . . . . . . . . 13  |-  0  <  2
1513, 14pm3.2i 471 . . . . . . . . . . . 12  |-  ( 2  e.  RR  /\  0  <  2 )
1615a1i 11 . . . . . . . . . . 11  |-  ( ( k  e.  NN  /\  M  e.  NN )  ->  ( 2  e.  RR  /\  0  <  2 ) )
17 lemul1 10875 . . . . . . . . . . 11  |-  ( ( k  e.  RR  /\  M  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( k  <_  M 
<->  ( k  x.  2 )  <_  ( M  x.  2 ) ) )
1810, 12, 16, 17syl3anc 1326 . . . . . . . . . 10  |-  ( ( k  e.  NN  /\  M  e.  NN )  ->  ( k  <_  M  <->  ( k  x.  2 )  <_  ( M  x.  2 ) ) )
19 gausslemma2d.p . . . . . . . . . . . . . . 15  |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )
20 gausslemma2d.m . . . . . . . . . . . . . . 15  |-  M  =  ( |_ `  ( P  /  4 ) )
2119, 20gausslemma2dlem0e 25085 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( M  x.  2 )  <  ( P  /  2 ) )
2221adantl 482 . . . . . . . . . . . . 13  |-  ( ( ( k  e.  NN  /\  M  e.  NN )  /\  ph )  -> 
( M  x.  2 )  <  ( P  /  2 ) )
2313a1i 11 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN  ->  2  e.  RR )
249, 23remulcld 10070 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN  ->  (
k  x.  2 )  e.  RR )
2524adantr 481 . . . . . . . . . . . . . 14  |-  ( ( k  e.  NN  /\  M  e.  NN )  ->  ( k  x.  2 )  e.  RR )
2613a1i 11 . . . . . . . . . . . . . . . 16  |-  ( M  e.  NN  ->  2  e.  RR )
2711, 26remulcld 10070 . . . . . . . . . . . . . . 15  |-  ( M  e.  NN  ->  ( M  x.  2 )  e.  RR )
2827adantl 482 . . . . . . . . . . . . . 14  |-  ( ( k  e.  NN  /\  M  e.  NN )  ->  ( M  x.  2 )  e.  RR )
2919gausslemma2dlem0a 25081 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  P  e.  NN )
3029nnred 11035 . . . . . . . . . . . . . . 15  |-  ( ph  ->  P  e.  RR )
3130rehalfcld 11279 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( P  /  2
)  e.  RR )
32 lelttr 10128 . . . . . . . . . . . . . 14  |-  ( ( ( k  x.  2 )  e.  RR  /\  ( M  x.  2
)  e.  RR  /\  ( P  /  2
)  e.  RR )  ->  ( ( ( k  x.  2 )  <_  ( M  x.  2 )  /\  ( M  x.  2 )  <  ( P  / 
2 ) )  -> 
( k  x.  2 )  <  ( P  /  2 ) ) )
3325, 28, 31, 32syl2an3an 1386 . . . . . . . . . . . . 13  |-  ( ( ( k  e.  NN  /\  M  e.  NN )  /\  ph )  -> 
( ( ( k  x.  2 )  <_ 
( M  x.  2 )  /\  ( M  x.  2 )  < 
( P  /  2
) )  ->  (
k  x.  2 )  <  ( P  / 
2 ) ) )
3422, 33mpan2d 710 . . . . . . . . . . . 12  |-  ( ( ( k  e.  NN  /\  M  e.  NN )  /\  ph )  -> 
( ( k  x.  2 )  <_  ( M  x.  2 )  ->  ( k  x.  2 )  <  ( P  /  2 ) ) )
3534ex 450 . . . . . . . . . . 11  |-  ( ( k  e.  NN  /\  M  e.  NN )  ->  ( ph  ->  (
( k  x.  2 )  <_  ( M  x.  2 )  ->  (
k  x.  2 )  <  ( P  / 
2 ) ) ) )
3635com23 86 . . . . . . . . . 10  |-  ( ( k  e.  NN  /\  M  e.  NN )  ->  ( ( k  x.  2 )  <_  ( M  x.  2 )  ->  ( ph  ->  ( k  x.  2 )  <  ( P  / 
2 ) ) ) )
3718, 36sylbid 230 . . . . . . . . 9  |-  ( ( k  e.  NN  /\  M  e.  NN )  ->  ( k  <_  M  ->  ( ph  ->  (
k  x.  2 )  <  ( P  / 
2 ) ) ) )
38373impia 1261 . . . . . . . 8  |-  ( ( k  e.  NN  /\  M  e.  NN  /\  k  <_  M )  ->  ( ph  ->  ( k  x.  2 )  <  ( P  /  2 ) ) )
398, 38sylbi 207 . . . . . . 7  |-  ( k  e.  ( 1 ... M )  ->  ( ph  ->  ( k  x.  2 )  <  ( P  /  2 ) ) )
4039impcom 446 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 1 ... M
) )  ->  (
k  x.  2 )  <  ( P  / 
2 ) )
4140adantr 481 . . . . 5  |-  ( ( ( ph  /\  k  e.  ( 1 ... M
) )  /\  x  =  k )  -> 
( k  x.  2 )  <  ( P  /  2 ) )
4241iftrued 4094 . . . 4  |-  ( ( ( ph  /\  k  e.  ( 1 ... M
) )  /\  x  =  k )  ->  if ( ( k  x.  2 )  <  ( P  /  2 ) ,  ( k  x.  2 ) ,  ( P  -  ( k  x.  2 ) ) )  =  ( k  x.  2 ) )
437, 42eqtrd 2656 . . 3  |-  ( ( ( ph  /\  k  e.  ( 1 ... M
) )  /\  x  =  k )  ->  if ( ( x  x.  2 )  <  ( P  /  2 ) ,  ( x  x.  2 ) ,  ( P  -  ( x  x.  2 ) ) )  =  ( k  x.  2 ) )
4419, 20gausslemma2dlem0d 25084 . . . . . . 7  |-  ( ph  ->  M  e.  NN0 )
4544nn0zd 11480 . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
46 gausslemma2d.h . . . . . . . 8  |-  H  =  ( ( P  - 
1 )  /  2
)
4719, 46gausslemma2dlem0b 25082 . . . . . . 7  |-  ( ph  ->  H  e.  NN )
4847nnzd 11481 . . . . . 6  |-  ( ph  ->  H  e.  ZZ )
4919, 20, 46gausslemma2dlem0g 25087 . . . . . 6  |-  ( ph  ->  M  <_  H )
50 eluz2 11693 . . . . . 6  |-  ( H  e.  ( ZZ>= `  M
)  <->  ( M  e.  ZZ  /\  H  e.  ZZ  /\  M  <_  H ) )
5145, 48, 49, 50syl3anbrc 1246 . . . . 5  |-  ( ph  ->  H  e.  ( ZZ>= `  M ) )
52 fzss2 12381 . . . . 5  |-  ( H  e.  ( ZZ>= `  M
)  ->  ( 1 ... M )  C_  ( 1 ... H
) )
5351, 52syl 17 . . . 4  |-  ( ph  ->  ( 1 ... M
)  C_  ( 1 ... H ) )
5453sselda 3603 . . 3  |-  ( (
ph  /\  k  e.  ( 1 ... M
) )  ->  k  e.  ( 1 ... H
) )
55 ovexd 6680 . . 3  |-  ( (
ph  /\  k  e.  ( 1 ... M
) )  ->  (
k  x.  2 )  e.  _V )
562, 43, 54, 55fvmptd 6288 . 2  |-  ( (
ph  /\  k  e.  ( 1 ... M
) )  ->  ( R `  k )  =  ( k  x.  2 ) )
5756ralrimiva 2966 1  |-  ( ph  ->  A. k  e.  ( 1 ... M ) ( R `  k
)  =  ( k  x.  2 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200    \ cdif 3571    C_ wss 3574   ifcif 4086   {csn 4177   class class class wbr 4653    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   RRcr 9935   0cc0 9936   1c1 9937    x. cmul 9941    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   NNcn 11020   2c2 11070   4c4 11072   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326   |_cfl 12591   Primecprime 15385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fl 12593  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-prm 15386
This theorem is referenced by:  gausslemma2dlem6  25097
  Copyright terms: Public domain W3C validator