MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  poxp Structured version   Visualization version   Unicode version

Theorem poxp 7289
Description: A lexicographical ordering of two posets. (Contributed by Scott Fenton, 16-Mar-2011.) (Revised by Mario Carneiro, 7-Mar-2013.)
Hypothesis
Ref Expression
poxp.1  |-  T  =  { <. x ,  y
>.  |  ( (
x  e.  ( A  X.  B )  /\  y  e.  ( A  X.  B ) )  /\  ( ( 1st `  x
) R ( 1st `  y )  \/  (
( 1st `  x
)  =  ( 1st `  y )  /\  ( 2nd `  x ) S ( 2nd `  y
) ) ) ) }
Assertion
Ref Expression
poxp  |-  ( ( R  Po  A  /\  S  Po  B )  ->  T  Po  ( A  X.  B ) )
Distinct variable groups:    x, A, y    x, B, y    x, R, y    x, S, y
Allowed substitution hints:    T( x, y)

Proof of Theorem poxp
Dummy variables  a 
b  c  d  e  f  t  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elxp 5131 . . . . . . . 8  |-  ( t  e.  ( A  X.  B )  <->  E. a E. b ( t  = 
<. a ,  b >.  /\  ( a  e.  A  /\  b  e.  B
) ) )
2 elxp 5131 . . . . . . . 8  |-  ( u  e.  ( A  X.  B )  <->  E. c E. d ( u  = 
<. c ,  d >.  /\  ( c  e.  A  /\  d  e.  B
) ) )
3 elxp 5131 . . . . . . . 8  |-  ( v  e.  ( A  X.  B )  <->  E. e E. f ( v  = 
<. e ,  f >.  /\  ( e  e.  A  /\  f  e.  B
) ) )
4 3an6 1409 . . . . . . . . . . . . . . . . 17  |-  ( ( ( t  =  <. a ,  b >.  /\  (
a  e.  A  /\  b  e.  B )
)  /\  ( u  =  <. c ,  d
>.  /\  ( c  e.  A  /\  d  e.  B ) )  /\  ( v  =  <. e ,  f >.  /\  (
e  e.  A  /\  f  e.  B )
) )  <->  ( (
t  =  <. a ,  b >.  /\  u  =  <. c ,  d
>.  /\  v  =  <. e ,  f >. )  /\  ( ( a  e.  A  /\  b  e.  B )  /\  (
c  e.  A  /\  d  e.  B )  /\  ( e  e.  A  /\  f  e.  B
) ) ) )
5 poirr 5046 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( R  Po  A  /\  a  e.  A )  ->  -.  a R a )
65ex 450 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( R  Po  A  ->  (
a  e.  A  ->  -.  a R a ) )
7 poirr 5046 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( S  Po  B  /\  b  e.  B )  ->  -.  b S b )
87intnand 962 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( S  Po  B  /\  b  e.  B )  ->  -.  ( a  =  a  /\  b S b ) )
98ex 450 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( S  Po  B  ->  (
b  e.  B  ->  -.  ( a  =  a  /\  b S b ) ) )
106, 9im2anan9 880 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( R  Po  A  /\  S  Po  B )  ->  ( ( a  e.  A  /\  b  e.  B )  ->  ( -.  a R a  /\  -.  ( a  =  a  /\  b S b ) ) ) )
11 ioran 511 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( -.  ( a R a  \/  ( a  =  a  /\  b S b ) )  <->  ( -.  a R a  /\  -.  ( a  =  a  /\  b S b ) ) )
1210, 11syl6ibr 242 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( R  Po  A  /\  S  Po  B )  ->  ( ( a  e.  A  /\  b  e.  B )  ->  -.  ( a R a  \/  ( a  =  a  /\  b S b ) ) ) )
1312imp 445 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( R  Po  A  /\  S  Po  B
)  /\  ( a  e.  A  /\  b  e.  B ) )  ->  -.  ( a R a  \/  ( a  =  a  /\  b S b ) ) )
1413intnand 962 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( R  Po  A  /\  S  Po  B
)  /\  ( a  e.  A  /\  b  e.  B ) )  ->  -.  ( ( ( a  e.  A  /\  a  e.  A )  /\  (
b  e.  B  /\  b  e.  B )
)  /\  ( a R a  \/  (
a  =  a  /\  b S b ) ) ) )
15143ad2antr1 1226 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( R  Po  A  /\  S  Po  B
)  /\  ( (
a  e.  A  /\  b  e.  B )  /\  ( c  e.  A  /\  d  e.  B
)  /\  ( e  e.  A  /\  f  e.  B ) ) )  ->  -.  ( (
( a  e.  A  /\  a  e.  A
)  /\  ( b  e.  B  /\  b  e.  B ) )  /\  ( a R a  \/  ( a  =  a  /\  b S b ) ) ) )
16 an4 865 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( a  e.  A  /\  c  e.  A )  /\  (
b  e.  B  /\  d  e.  B )
)  /\  ( a R c  \/  (
a  =  c  /\  b S d ) ) )  /\  ( ( ( c  e.  A  /\  e  e.  A
)  /\  ( d  e.  B  /\  f  e.  B ) )  /\  ( c R e  \/  ( c  =  e  /\  d S f ) ) ) )  <->  ( ( ( ( a  e.  A  /\  c  e.  A
)  /\  ( b  e.  B  /\  d  e.  B ) )  /\  ( ( c  e.  A  /\  e  e.  A )  /\  (
d  e.  B  /\  f  e.  B )
) )  /\  (
( a R c  \/  ( a  =  c  /\  b S d ) )  /\  ( c R e  \/  ( c  =  e  /\  d S f ) ) ) ) )
17 3an6 1409 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( a  e.  A  /\  b  e.  B
)  /\  ( c  e.  A  /\  d  e.  B )  /\  (
e  e.  A  /\  f  e.  B )
)  <->  ( ( a  e.  A  /\  c  e.  A  /\  e  e.  A )  /\  (
b  e.  B  /\  d  e.  B  /\  f  e.  B )
) )
18 potr 5047 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ( R  Po  A  /\  ( a  e.  A  /\  c  e.  A  /\  e  e.  A
) )  ->  (
( a R c  /\  c R e )  ->  a R
e ) )
19183impia 1261 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ( R  Po  A  /\  ( a  e.  A  /\  c  e.  A  /\  e  e.  A
)  /\  ( a R c  /\  c R e ) )  ->  a R e )
2019orcd 407 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( R  Po  A  /\  ( a  e.  A  /\  c  e.  A  /\  e  e.  A
)  /\  ( a R c  /\  c R e ) )  ->  ( a R e  \/  ( a  =  e  /\  b S f ) ) )
21203expia 1267 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( R  Po  A  /\  ( a  e.  A  /\  c  e.  A  /\  e  e.  A
) )  ->  (
( a R c  /\  c R e )  ->  ( a R e  \/  (
a  =  e  /\  b S f ) ) ) )
2221expdimp 453 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( R  Po  A  /\  ( a  e.  A  /\  c  e.  A  /\  e  e.  A
) )  /\  a R c )  -> 
( c R e  ->  ( a R e  \/  ( a  =  e  /\  b S f ) ) ) )
23 breq2 4657 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( c  =  e  ->  (
a R c  <->  a R
e ) )
2423biimpa 501 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ( c  =  e  /\  a R c )  -> 
a R e )
2524orcd 407 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ( c  =  e  /\  a R c )  -> 
( a R e  \/  ( a  =  e  /\  b S f ) ) )
2625expcom 451 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( a R c  ->  (
c  =  e  -> 
( a R e  \/  ( a  =  e  /\  b S f ) ) ) )
2726adantrd 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( a R c  ->  (
( c  =  e  /\  d S f )  ->  ( a R e  \/  (
a  =  e  /\  b S f ) ) ) )
2827adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( R  Po  A  /\  ( a  e.  A  /\  c  e.  A  /\  e  e.  A
) )  /\  a R c )  -> 
( ( c  =  e  /\  d S f )  ->  (
a R e  \/  ( a  =  e  /\  b S f ) ) ) )
2922, 28jaod 395 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( R  Po  A  /\  ( a  e.  A  /\  c  e.  A  /\  e  e.  A
) )  /\  a R c )  -> 
( ( c R e  \/  ( c  =  e  /\  d S f ) )  ->  ( a R e  \/  ( a  =  e  /\  b S f ) ) ) )
3029ex 450 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( R  Po  A  /\  ( a  e.  A  /\  c  e.  A  /\  e  e.  A
) )  ->  (
a R c  -> 
( ( c R e  \/  ( c  =  e  /\  d S f ) )  ->  ( a R e  \/  ( a  =  e  /\  b S f ) ) ) ) )
31 potr 5047 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( ( S  Po  B  /\  ( b  e.  B  /\  d  e.  B  /\  f  e.  B
) )  ->  (
( b S d  /\  d S f )  ->  b S
f ) )
3231expdimp 453 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ( ( S  Po  B  /\  ( b  e.  B  /\  d  e.  B  /\  f  e.  B
) )  /\  b S d )  -> 
( d S f  ->  b S f ) )
3332anim2d 589 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ( ( S  Po  B  /\  ( b  e.  B  /\  d  e.  B  /\  f  e.  B
) )  /\  b S d )  -> 
( ( c  =  e  /\  d S f )  ->  (
c  =  e  /\  b S f ) ) )
3433orim2d 885 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( ( S  Po  B  /\  ( b  e.  B  /\  d  e.  B  /\  f  e.  B
) )  /\  b S d )  -> 
( ( c R e  \/  ( c  =  e  /\  d S f ) )  ->  ( c R e  \/  ( c  =  e  /\  b S f ) ) ) )
35 breq1 4656 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( a  =  c  ->  (
a R e  <->  c R
e ) )
36 equequ1 1952 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( a  =  c  ->  (
a  =  e  <->  c  =  e ) )
3736anbi1d 741 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( a  =  c  ->  (
( a  =  e  /\  b S f )  <->  ( c  =  e  /\  b S f ) ) )
3835, 37orbi12d 746 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( a  =  c  ->  (
( a R e  \/  ( a  =  e  /\  b S f ) )  <->  ( c R e  \/  (
c  =  e  /\  b S f ) ) ) )
3938imbi2d 330 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( a  =  c  ->  (
( ( c R e  \/  ( c  =  e  /\  d S f ) )  ->  ( a R e  \/  ( a  =  e  /\  b S f ) ) )  <->  ( ( c R e  \/  (
c  =  e  /\  d S f ) )  ->  ( c R e  \/  ( c  =  e  /\  b S f ) ) ) ) )
4034, 39syl5ibr 236 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( a  =  c  ->  (
( ( S  Po  B  /\  ( b  e.  B  /\  d  e.  B  /\  f  e.  B ) )  /\  b S d )  -> 
( ( c R e  \/  ( c  =  e  /\  d S f ) )  ->  ( a R e  \/  ( a  =  e  /\  b S f ) ) ) ) )
4140expd 452 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( a  =  c  ->  (
( S  Po  B  /\  ( b  e.  B  /\  d  e.  B  /\  f  e.  B
) )  ->  (
b S d  -> 
( ( c R e  \/  ( c  =  e  /\  d S f ) )  ->  ( a R e  \/  ( a  =  e  /\  b S f ) ) ) ) ) )
4241com12 32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( S  Po  B  /\  ( b  e.  B  /\  d  e.  B  /\  f  e.  B
) )  ->  (
a  =  c  -> 
( b S d  ->  ( ( c R e  \/  (
c  =  e  /\  d S f ) )  ->  ( a R e  \/  ( a  =  e  /\  b S f ) ) ) ) ) )
4342impd 447 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( S  Po  B  /\  ( b  e.  B  /\  d  e.  B  /\  f  e.  B
) )  ->  (
( a  =  c  /\  b S d )  ->  ( (
c R e  \/  ( c  =  e  /\  d S f ) )  ->  (
a R e  \/  ( a  =  e  /\  b S f ) ) ) ) )
4430, 43jaao 531 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( R  Po  A  /\  ( a  e.  A  /\  c  e.  A  /\  e  e.  A
) )  /\  ( S  Po  B  /\  ( b  e.  B  /\  d  e.  B  /\  f  e.  B
) ) )  -> 
( ( a R c  \/  ( a  =  c  /\  b S d ) )  ->  ( ( c R e  \/  (
c  =  e  /\  d S f ) )  ->  ( a R e  \/  ( a  =  e  /\  b S f ) ) ) ) )
4544impd 447 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( R  Po  A  /\  ( a  e.  A  /\  c  e.  A  /\  e  e.  A
) )  /\  ( S  Po  B  /\  ( b  e.  B  /\  d  e.  B  /\  f  e.  B
) ) )  -> 
( ( ( a R c  \/  (
a  =  c  /\  b S d ) )  /\  ( c R e  \/  ( c  =  e  /\  d S f ) ) )  ->  ( a R e  \/  (
a  =  e  /\  b S f ) ) ) )
4645an4s 869 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( R  Po  A  /\  S  Po  B
)  /\  ( (
a  e.  A  /\  c  e.  A  /\  e  e.  A )  /\  ( b  e.  B  /\  d  e.  B  /\  f  e.  B
) ) )  -> 
( ( ( a R c  \/  (
a  =  c  /\  b S d ) )  /\  ( c R e  \/  ( c  =  e  /\  d S f ) ) )  ->  ( a R e  \/  (
a  =  e  /\  b S f ) ) ) )
4717, 46sylan2b 492 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( R  Po  A  /\  S  Po  B
)  /\  ( (
a  e.  A  /\  b  e.  B )  /\  ( c  e.  A  /\  d  e.  B
)  /\  ( e  e.  A  /\  f  e.  B ) ) )  ->  ( ( ( a R c  \/  ( a  =  c  /\  b S d ) )  /\  (
c R e  \/  ( c  =  e  /\  d S f ) ) )  -> 
( a R e  \/  ( a  =  e  /\  b S f ) ) ) )
48 an4 865 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( a  e.  A  /\  b  e.  B
)  /\  ( e  e.  A  /\  f  e.  B ) )  <->  ( (
a  e.  A  /\  e  e.  A )  /\  ( b  e.  B  /\  f  e.  B
) ) )
4948biimpi 206 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( a  e.  A  /\  b  e.  B
)  /\  ( e  e.  A  /\  f  e.  B ) )  -> 
( ( a  e.  A  /\  e  e.  A )  /\  (
b  e.  B  /\  f  e.  B )
) )
50493adant2 1080 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( a  e.  A  /\  b  e.  B
)  /\  ( c  e.  A  /\  d  e.  B )  /\  (
e  e.  A  /\  f  e.  B )
)  ->  ( (
a  e.  A  /\  e  e.  A )  /\  ( b  e.  B  /\  f  e.  B
) ) )
5150adantl 482 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( R  Po  A  /\  S  Po  B
)  /\  ( (
a  e.  A  /\  b  e.  B )  /\  ( c  e.  A  /\  d  e.  B
)  /\  ( e  e.  A  /\  f  e.  B ) ) )  ->  ( ( a  e.  A  /\  e  e.  A )  /\  (
b  e.  B  /\  f  e.  B )
) )
5247, 51jctild 566 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( R  Po  A  /\  S  Po  B
)  /\  ( (
a  e.  A  /\  b  e.  B )  /\  ( c  e.  A  /\  d  e.  B
)  /\  ( e  e.  A  /\  f  e.  B ) ) )  ->  ( ( ( a R c  \/  ( a  =  c  /\  b S d ) )  /\  (
c R e  \/  ( c  =  e  /\  d S f ) ) )  -> 
( ( ( a  e.  A  /\  e  e.  A )  /\  (
b  e.  B  /\  f  e.  B )
)  /\  ( a R e  \/  (
a  =  e  /\  b S f ) ) ) ) )
5352adantld 483 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( R  Po  A  /\  S  Po  B
)  /\  ( (
a  e.  A  /\  b  e.  B )  /\  ( c  e.  A  /\  d  e.  B
)  /\  ( e  e.  A  /\  f  e.  B ) ) )  ->  ( ( ( ( ( a  e.  A  /\  c  e.  A )  /\  (
b  e.  B  /\  d  e.  B )
)  /\  ( (
c  e.  A  /\  e  e.  A )  /\  ( d  e.  B  /\  f  e.  B
) ) )  /\  ( ( a R c  \/  ( a  =  c  /\  b S d ) )  /\  ( c R e  \/  ( c  =  e  /\  d S f ) ) ) )  ->  (
( ( a  e.  A  /\  e  e.  A )  /\  (
b  e.  B  /\  f  e.  B )
)  /\  ( a R e  \/  (
a  =  e  /\  b S f ) ) ) ) )
5416, 53syl5bi 232 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( R  Po  A  /\  S  Po  B
)  /\  ( (
a  e.  A  /\  b  e.  B )  /\  ( c  e.  A  /\  d  e.  B
)  /\  ( e  e.  A  /\  f  e.  B ) ) )  ->  ( ( ( ( ( a  e.  A  /\  c  e.  A )  /\  (
b  e.  B  /\  d  e.  B )
)  /\  ( a R c  \/  (
a  =  c  /\  b S d ) ) )  /\  ( ( ( c  e.  A  /\  e  e.  A
)  /\  ( d  e.  B  /\  f  e.  B ) )  /\  ( c R e  \/  ( c  =  e  /\  d S f ) ) ) )  ->  ( (
( a  e.  A  /\  e  e.  A
)  /\  ( b  e.  B  /\  f  e.  B ) )  /\  ( a R e  \/  ( a  =  e  /\  b S f ) ) ) ) )
5515, 54jca 554 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( R  Po  A  /\  S  Po  B
)  /\  ( (
a  e.  A  /\  b  e.  B )  /\  ( c  e.  A  /\  d  e.  B
)  /\  ( e  e.  A  /\  f  e.  B ) ) )  ->  ( -.  (
( ( a  e.  A  /\  a  e.  A )  /\  (
b  e.  B  /\  b  e.  B )
)  /\  ( a R a  \/  (
a  =  a  /\  b S b ) ) )  /\  ( ( ( ( ( a  e.  A  /\  c  e.  A )  /\  (
b  e.  B  /\  d  e.  B )
)  /\  ( a R c  \/  (
a  =  c  /\  b S d ) ) )  /\  ( ( ( c  e.  A  /\  e  e.  A
)  /\  ( d  e.  B  /\  f  e.  B ) )  /\  ( c R e  \/  ( c  =  e  /\  d S f ) ) ) )  ->  ( (
( a  e.  A  /\  e  e.  A
)  /\  ( b  e.  B  /\  f  e.  B ) )  /\  ( a R e  \/  ( a  =  e  /\  b S f ) ) ) ) ) )
56 breq12 4658 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( t  =  <. a ,  b >.  /\  t  =  <. a ,  b
>. )  ->  ( t T t  <->  <. a ,  b >. T <. a ,  b >. )
)
5756anidms 677 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( t  =  <. a ,  b
>.  ->  ( t T t  <->  <. a ,  b
>. T <. a ,  b
>. ) )
5857notbid 308 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( t  =  <. a ,  b
>.  ->  ( -.  t T t  <->  -.  <. a ,  b >. T <. a ,  b >. )
)
59583ad2ant1 1082 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( t  =  <. a ,  b >.  /\  u  =  <. c ,  d
>.  /\  v  =  <. e ,  f >. )  ->  ( -.  t T t  <->  -.  <. a ,  b >. T <. a ,  b >. )
)
60 breq12 4658 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( t  =  <. a ,  b >.  /\  u  =  <. c ,  d
>. )  ->  ( t T u  <->  <. a ,  b >. T <. c ,  d >. )
)
61603adant3 1081 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( t  =  <. a ,  b >.  /\  u  =  <. c ,  d
>.  /\  v  =  <. e ,  f >. )  ->  ( t T u  <->  <. a ,  b >. T <. c ,  d
>. ) )
62 breq12 4658 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( u  =  <. c ,  d >.  /\  v  =  <. e ,  f
>. )  ->  ( u T v  <->  <. c ,  d >. T <. e ,  f >. )
)
63623adant1 1079 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( t  =  <. a ,  b >.  /\  u  =  <. c ,  d
>.  /\  v  =  <. e ,  f >. )  ->  ( u T v  <->  <. c ,  d >. T <. e ,  f
>. ) )
6461, 63anbi12d 747 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( t  =  <. a ,  b >.  /\  u  =  <. c ,  d
>.  /\  v  =  <. e ,  f >. )  ->  ( ( t T u  /\  u T v )  <->  ( <. a ,  b >. T <. c ,  d >.  /\  <. c ,  d >. T <. e ,  f >. )
) )
65 breq12 4658 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( t  =  <. a ,  b >.  /\  v  =  <. e ,  f
>. )  ->  ( t T v  <->  <. a ,  b >. T <. e ,  f >. )
)
66653adant2 1080 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( t  =  <. a ,  b >.  /\  u  =  <. c ,  d
>.  /\  v  =  <. e ,  f >. )  ->  ( t T v  <->  <. a ,  b >. T <. e ,  f
>. ) )
6764, 66imbi12d 334 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( t  =  <. a ,  b >.  /\  u  =  <. c ,  d
>.  /\  v  =  <. e ,  f >. )  ->  ( ( ( t T u  /\  u T v )  -> 
t T v )  <-> 
( ( <. a ,  b >. T <. c ,  d >.  /\  <. c ,  d >. T <. e ,  f >. )  -> 
<. a ,  b >. T <. e ,  f
>. ) ) )
6859, 67anbi12d 747 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( t  =  <. a ,  b >.  /\  u  =  <. c ,  d
>.  /\  v  =  <. e ,  f >. )  ->  ( ( -.  t T t  /\  (
( t T u  /\  u T v )  ->  t T
v ) )  <->  ( -.  <.
a ,  b >. T <. a ,  b
>.  /\  ( ( <.
a ,  b >. T <. c ,  d
>.  /\  <. c ,  d
>. T <. e ,  f
>. )  ->  <. a ,  b >. T <. e ,  f >. )
) ) )
69 poxp.1 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  T  =  { <. x ,  y
>.  |  ( (
x  e.  ( A  X.  B )  /\  y  e.  ( A  X.  B ) )  /\  ( ( 1st `  x
) R ( 1st `  y )  \/  (
( 1st `  x
)  =  ( 1st `  y )  /\  ( 2nd `  x ) S ( 2nd `  y
) ) ) ) }
7069xporderlem 7288 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( <.
a ,  b >. T <. a ,  b
>. 
<->  ( ( ( a  e.  A  /\  a  e.  A )  /\  (
b  e.  B  /\  b  e.  B )
)  /\  ( a R a  \/  (
a  =  a  /\  b S b ) ) ) )
7170notbii 310 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( -. 
<. a ,  b >. T <. a ,  b
>. 
<->  -.  ( ( ( a  e.  A  /\  a  e.  A )  /\  ( b  e.  B  /\  b  e.  B
) )  /\  (
a R a  \/  ( a  =  a  /\  b S b ) ) ) )
7269xporderlem 7288 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( <.
a ,  b >. T <. c ,  d
>. 
<->  ( ( ( a  e.  A  /\  c  e.  A )  /\  (
b  e.  B  /\  d  e.  B )
)  /\  ( a R c  \/  (
a  =  c  /\  b S d ) ) ) )
7369xporderlem 7288 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( <.
c ,  d >. T <. e ,  f
>. 
<->  ( ( ( c  e.  A  /\  e  e.  A )  /\  (
d  e.  B  /\  f  e.  B )
)  /\  ( c R e  \/  (
c  =  e  /\  d S f ) ) ) )
7472, 73anbi12i 733 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
<. a ,  b >. T <. c ,  d
>.  /\  <. c ,  d
>. T <. e ,  f
>. )  <->  ( ( ( ( a  e.  A  /\  c  e.  A
)  /\  ( b  e.  B  /\  d  e.  B ) )  /\  ( a R c  \/  ( a  =  c  /\  b S d ) ) )  /\  ( ( ( c  e.  A  /\  e  e.  A )  /\  ( d  e.  B  /\  f  e.  B
) )  /\  (
c R e  \/  ( c  =  e  /\  d S f ) ) ) ) )
7569xporderlem 7288 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( <.
a ,  b >. T <. e ,  f
>. 
<->  ( ( ( a  e.  A  /\  e  e.  A )  /\  (
b  e.  B  /\  f  e.  B )
)  /\  ( a R e  \/  (
a  =  e  /\  b S f ) ) ) )
7674, 75imbi12i 340 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( <. a ,  b
>. T <. c ,  d
>.  /\  <. c ,  d
>. T <. e ,  f
>. )  ->  <. a ,  b >. T <. e ,  f >. )  <->  ( ( ( ( ( a  e.  A  /\  c  e.  A )  /\  ( b  e.  B  /\  d  e.  B
) )  /\  (
a R c  \/  ( a  =  c  /\  b S d ) ) )  /\  ( ( ( c  e.  A  /\  e  e.  A )  /\  (
d  e.  B  /\  f  e.  B )
)  /\  ( c R e  \/  (
c  =  e  /\  d S f ) ) ) )  ->  (
( ( a  e.  A  /\  e  e.  A )  /\  (
b  e.  B  /\  f  e.  B )
)  /\  ( a R e  \/  (
a  =  e  /\  b S f ) ) ) ) )
7771, 76anbi12i 733 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( -.  <. a ,  b
>. T <. a ,  b
>.  /\  ( ( <.
a ,  b >. T <. c ,  d
>.  /\  <. c ,  d
>. T <. e ,  f
>. )  ->  <. a ,  b >. T <. e ,  f >. )
)  <->  ( -.  (
( ( a  e.  A  /\  a  e.  A )  /\  (
b  e.  B  /\  b  e.  B )
)  /\  ( a R a  \/  (
a  =  a  /\  b S b ) ) )  /\  ( ( ( ( ( a  e.  A  /\  c  e.  A )  /\  (
b  e.  B  /\  d  e.  B )
)  /\  ( a R c  \/  (
a  =  c  /\  b S d ) ) )  /\  ( ( ( c  e.  A  /\  e  e.  A
)  /\  ( d  e.  B  /\  f  e.  B ) )  /\  ( c R e  \/  ( c  =  e  /\  d S f ) ) ) )  ->  ( (
( a  e.  A  /\  e  e.  A
)  /\  ( b  e.  B  /\  f  e.  B ) )  /\  ( a R e  \/  ( a  =  e  /\  b S f ) ) ) ) ) )
7868, 77syl6bb 276 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( t  =  <. a ,  b >.  /\  u  =  <. c ,  d
>.  /\  v  =  <. e ,  f >. )  ->  ( ( -.  t T t  /\  (
( t T u  /\  u T v )  ->  t T
v ) )  <->  ( -.  ( ( ( a  e.  A  /\  a  e.  A )  /\  (
b  e.  B  /\  b  e.  B )
)  /\  ( a R a  \/  (
a  =  a  /\  b S b ) ) )  /\  ( ( ( ( ( a  e.  A  /\  c  e.  A )  /\  (
b  e.  B  /\  d  e.  B )
)  /\  ( a R c  \/  (
a  =  c  /\  b S d ) ) )  /\  ( ( ( c  e.  A  /\  e  e.  A
)  /\  ( d  e.  B  /\  f  e.  B ) )  /\  ( c R e  \/  ( c  =  e  /\  d S f ) ) ) )  ->  ( (
( a  e.  A  /\  e  e.  A
)  /\  ( b  e.  B  /\  f  e.  B ) )  /\  ( a R e  \/  ( a  =  e  /\  b S f ) ) ) ) ) ) )
7955, 78syl5ibr 236 . . . . . . . . . . . . . . . . . . 19  |-  ( ( t  =  <. a ,  b >.  /\  u  =  <. c ,  d
>.  /\  v  =  <. e ,  f >. )  ->  ( ( ( R  Po  A  /\  S  Po  B )  /\  (
( a  e.  A  /\  b  e.  B
)  /\  ( c  e.  A  /\  d  e.  B )  /\  (
e  e.  A  /\  f  e.  B )
) )  ->  ( -.  t T t  /\  ( ( t T u  /\  u T v )  ->  t T v ) ) ) )
8079expcomd 454 . . . . . . . . . . . . . . . . . 18  |-  ( ( t  =  <. a ,  b >.  /\  u  =  <. c ,  d
>.  /\  v  =  <. e ,  f >. )  ->  ( ( ( a  e.  A  /\  b  e.  B )  /\  (
c  e.  A  /\  d  e.  B )  /\  ( e  e.  A  /\  f  e.  B
) )  ->  (
( R  Po  A  /\  S  Po  B
)  ->  ( -.  t T t  /\  (
( t T u  /\  u T v )  ->  t T
v ) ) ) ) )
8180imp 445 . . . . . . . . . . . . . . . . 17  |-  ( ( ( t  =  <. a ,  b >.  /\  u  =  <. c ,  d
>.  /\  v  =  <. e ,  f >. )  /\  ( ( a  e.  A  /\  b  e.  B )  /\  (
c  e.  A  /\  d  e.  B )  /\  ( e  e.  A  /\  f  e.  B
) ) )  -> 
( ( R  Po  A  /\  S  Po  B
)  ->  ( -.  t T t  /\  (
( t T u  /\  u T v )  ->  t T
v ) ) ) )
824, 81sylbi 207 . . . . . . . . . . . . . . . 16  |-  ( ( ( t  =  <. a ,  b >.  /\  (
a  e.  A  /\  b  e.  B )
)  /\  ( u  =  <. c ,  d
>.  /\  ( c  e.  A  /\  d  e.  B ) )  /\  ( v  =  <. e ,  f >.  /\  (
e  e.  A  /\  f  e.  B )
) )  ->  (
( R  Po  A  /\  S  Po  B
)  ->  ( -.  t T t  /\  (
( t T u  /\  u T v )  ->  t T
v ) ) ) )
83823exp 1264 . . . . . . . . . . . . . . 15  |-  ( ( t  =  <. a ,  b >.  /\  (
a  e.  A  /\  b  e.  B )
)  ->  ( (
u  =  <. c ,  d >.  /\  (
c  e.  A  /\  d  e.  B )
)  ->  ( (
v  =  <. e ,  f >.  /\  (
e  e.  A  /\  f  e.  B )
)  ->  ( ( R  Po  A  /\  S  Po  B )  ->  ( -.  t T t  /\  ( ( t T u  /\  u T v )  -> 
t T v ) ) ) ) ) )
8483com3l 89 . . . . . . . . . . . . . 14  |-  ( ( u  =  <. c ,  d >.  /\  (
c  e.  A  /\  d  e.  B )
)  ->  ( (
v  =  <. e ,  f >.  /\  (
e  e.  A  /\  f  e.  B )
)  ->  ( (
t  =  <. a ,  b >.  /\  (
a  e.  A  /\  b  e.  B )
)  ->  ( ( R  Po  A  /\  S  Po  B )  ->  ( -.  t T t  /\  ( ( t T u  /\  u T v )  -> 
t T v ) ) ) ) ) )
8584exlimivv 1860 . . . . . . . . . . . . 13  |-  ( E. c E. d ( u  =  <. c ,  d >.  /\  (
c  e.  A  /\  d  e.  B )
)  ->  ( (
v  =  <. e ,  f >.  /\  (
e  e.  A  /\  f  e.  B )
)  ->  ( (
t  =  <. a ,  b >.  /\  (
a  e.  A  /\  b  e.  B )
)  ->  ( ( R  Po  A  /\  S  Po  B )  ->  ( -.  t T t  /\  ( ( t T u  /\  u T v )  -> 
t T v ) ) ) ) ) )
8685com3l 89 . . . . . . . . . . . 12  |-  ( ( v  =  <. e ,  f >.  /\  (
e  e.  A  /\  f  e.  B )
)  ->  ( (
t  =  <. a ,  b >.  /\  (
a  e.  A  /\  b  e.  B )
)  ->  ( E. c E. d ( u  =  <. c ,  d
>.  /\  ( c  e.  A  /\  d  e.  B ) )  -> 
( ( R  Po  A  /\  S  Po  B
)  ->  ( -.  t T t  /\  (
( t T u  /\  u T v )  ->  t T
v ) ) ) ) ) )
8786exlimivv 1860 . . . . . . . . . . 11  |-  ( E. e E. f ( v  =  <. e ,  f >.  /\  (
e  e.  A  /\  f  e.  B )
)  ->  ( (
t  =  <. a ,  b >.  /\  (
a  e.  A  /\  b  e.  B )
)  ->  ( E. c E. d ( u  =  <. c ,  d
>.  /\  ( c  e.  A  /\  d  e.  B ) )  -> 
( ( R  Po  A  /\  S  Po  B
)  ->  ( -.  t T t  /\  (
( t T u  /\  u T v )  ->  t T
v ) ) ) ) ) )
8887com3l 89 . . . . . . . . . 10  |-  ( ( t  =  <. a ,  b >.  /\  (
a  e.  A  /\  b  e.  B )
)  ->  ( E. c E. d ( u  =  <. c ,  d
>.  /\  ( c  e.  A  /\  d  e.  B ) )  -> 
( E. e E. f ( v  = 
<. e ,  f >.  /\  ( e  e.  A  /\  f  e.  B
) )  ->  (
( R  Po  A  /\  S  Po  B
)  ->  ( -.  t T t  /\  (
( t T u  /\  u T v )  ->  t T
v ) ) ) ) ) )
8988exlimivv 1860 . . . . . . . . 9  |-  ( E. a E. b ( t  =  <. a ,  b >.  /\  (
a  e.  A  /\  b  e.  B )
)  ->  ( E. c E. d ( u  =  <. c ,  d
>.  /\  ( c  e.  A  /\  d  e.  B ) )  -> 
( E. e E. f ( v  = 
<. e ,  f >.  /\  ( e  e.  A  /\  f  e.  B
) )  ->  (
( R  Po  A  /\  S  Po  B
)  ->  ( -.  t T t  /\  (
( t T u  /\  u T v )  ->  t T
v ) ) ) ) ) )
90893imp 1256 . . . . . . . 8  |-  ( ( E. a E. b
( t  =  <. a ,  b >.  /\  (
a  e.  A  /\  b  e.  B )
)  /\  E. c E. d ( u  = 
<. c ,  d >.  /\  ( c  e.  A  /\  d  e.  B
) )  /\  E. e E. f ( v  =  <. e ,  f
>.  /\  ( e  e.  A  /\  f  e.  B ) ) )  ->  ( ( R  Po  A  /\  S  Po  B )  ->  ( -.  t T t  /\  ( ( t T u  /\  u T v )  ->  t T v ) ) ) )
911, 2, 3, 90syl3anb 1369 . . . . . . 7  |-  ( ( t  e.  ( A  X.  B )  /\  u  e.  ( A  X.  B )  /\  v  e.  ( A  X.  B
) )  ->  (
( R  Po  A  /\  S  Po  B
)  ->  ( -.  t T t  /\  (
( t T u  /\  u T v )  ->  t T
v ) ) ) )
92913expia 1267 . . . . . 6  |-  ( ( t  e.  ( A  X.  B )  /\  u  e.  ( A  X.  B ) )  -> 
( v  e.  ( A  X.  B )  ->  ( ( R  Po  A  /\  S  Po  B )  ->  ( -.  t T t  /\  ( ( t T u  /\  u T v )  ->  t T v ) ) ) ) )
9392com3r 87 . . . . 5  |-  ( ( R  Po  A  /\  S  Po  B )  ->  ( ( t  e.  ( A  X.  B
)  /\  u  e.  ( A  X.  B
) )  ->  (
v  e.  ( A  X.  B )  -> 
( -.  t T t  /\  ( ( t T u  /\  u T v )  -> 
t T v ) ) ) ) )
9493imp 445 . . . 4  |-  ( ( ( R  Po  A  /\  S  Po  B
)  /\  ( t  e.  ( A  X.  B
)  /\  u  e.  ( A  X.  B
) ) )  -> 
( v  e.  ( A  X.  B )  ->  ( -.  t T t  /\  (
( t T u  /\  u T v )  ->  t T
v ) ) ) )
9594ralrimiv 2965 . . 3  |-  ( ( ( R  Po  A  /\  S  Po  B
)  /\  ( t  e.  ( A  X.  B
)  /\  u  e.  ( A  X.  B
) ) )  ->  A. v  e.  ( A  X.  B ) ( -.  t T t  /\  ( ( t T u  /\  u T v )  -> 
t T v ) ) )
9695ralrimivva 2971 . 2  |-  ( ( R  Po  A  /\  S  Po  B )  ->  A. t  e.  ( A  X.  B ) A. u  e.  ( A  X.  B ) A. v  e.  ( A  X.  B ) ( -.  t T t  /\  ( ( t T u  /\  u T v )  -> 
t T v ) ) )
97 df-po 5035 . 2  |-  ( T  Po  ( A  X.  B )  <->  A. t  e.  ( A  X.  B
) A. u  e.  ( A  X.  B
) A. v  e.  ( A  X.  B
) ( -.  t T t  /\  (
( t T u  /\  u T v )  ->  t T
v ) ) )
9896, 97sylibr 224 1  |-  ( ( R  Po  A  /\  S  Po  B )  ->  T  Po  ( A  X.  B ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990   A.wral 2912   <.cop 4183   class class class wbr 4653   {copab 4712    Po wpo 5033    X. cxp 5112   ` cfv 5888   1stc1st 7166   2ndc2nd 7167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fv 5896  df-1st 7168  df-2nd 7169
This theorem is referenced by:  soxp  7290
  Copyright terms: Public domain W3C validator