Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grposnOLD Structured version   Visualization version   Unicode version

Theorem grposnOLD 33681
Description: The group operation for the singleton group. Obsolete, use grp1 17522. instead (Contributed by NM, 4-Nov-2006.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
grposnOLD.1  |-  A  e. 
_V
Assertion
Ref Expression
grposnOLD  |-  { <. <. A ,  A >. ,  A >. }  e.  GrpOp

Proof of Theorem grposnOLD
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snex 4908 . 2  |-  { A }  e.  _V
2 opex 4932 . . . . 5  |-  <. A ,  A >.  e.  _V
3 grposnOLD.1 . . . . 5  |-  A  e. 
_V
42, 3f1osn 6176 . . . 4  |-  { <. <. A ,  A >. ,  A >. } : { <. A ,  A >. } -1-1-onto-> { A }
5 f1of 6137 . . . 4  |-  ( {
<. <. A ,  A >. ,  A >. } : { <. A ,  A >. } -1-1-onto-> { A }  ->  {
<. <. A ,  A >. ,  A >. } : { <. A ,  A >. } --> { A }
)
64, 5ax-mp 5 . . 3  |-  { <. <. A ,  A >. ,  A >. } : { <. A ,  A >. } --> { A }
73, 3xpsn 6407 . . . 4  |-  ( { A }  X.  { A } )  =  { <. A ,  A >. }
87feq2i 6037 . . 3  |-  ( {
<. <. A ,  A >. ,  A >. } :
( { A }  X.  { A } ) --> { A }  <->  { <. <. A ,  A >. ,  A >. } : { <. A ,  A >. } --> { A } )
96, 8mpbir 221 . 2  |-  { <. <. A ,  A >. ,  A >. } : ( { A }  X.  { A } ) --> { A }
10 velsn 4193 . . 3  |-  ( x  e.  { A }  <->  x  =  A )
11 velsn 4193 . . 3  |-  ( y  e.  { A }  <->  y  =  A )
12 velsn 4193 . . 3  |-  ( z  e.  { A }  <->  z  =  A )
13 oveq2 6658 . . . . . 6  |-  ( z  =  A  ->  (
( x { <. <. A ,  A >. ,  A >. } y ) { <. <. A ,  A >. ,  A >. } z )  =  ( ( x { <. <. A ,  A >. ,  A >. } y ) { <. <. A ,  A >. ,  A >. } A ) )
14 oveq1 6657 . . . . . . . . 9  |-  ( x  =  A  ->  (
x { <. <. A ,  A >. ,  A >. } y )  =  ( A { <. <. A ,  A >. ,  A >. } y ) )
15 oveq2 6658 . . . . . . . . . 10  |-  ( y  =  A  ->  ( A { <. <. A ,  A >. ,  A >. } y )  =  ( A { <. <. A ,  A >. ,  A >. } A
) )
16 df-ov 6653 . . . . . . . . . . 11  |-  ( A { <. <. A ,  A >. ,  A >. } A
)  =  ( {
<. <. A ,  A >. ,  A >. } `  <. A ,  A >. )
172, 3fvsn 6446 . . . . . . . . . . 11  |-  ( {
<. <. A ,  A >. ,  A >. } `  <. A ,  A >. )  =  A
1816, 17eqtri 2644 . . . . . . . . . 10  |-  ( A { <. <. A ,  A >. ,  A >. } A
)  =  A
1915, 18syl6eq 2672 . . . . . . . . 9  |-  ( y  =  A  ->  ( A { <. <. A ,  A >. ,  A >. } y )  =  A )
2014, 19sylan9eq 2676 . . . . . . . 8  |-  ( ( x  =  A  /\  y  =  A )  ->  ( x { <. <. A ,  A >. ,  A >. } y )  =  A )
2120oveq1d 6665 . . . . . . 7  |-  ( ( x  =  A  /\  y  =  A )  ->  ( ( x { <. <. A ,  A >. ,  A >. } y ) { <. <. A ,  A >. ,  A >. } A )  =  ( A { <. <. A ,  A >. ,  A >. } A ) )
2221, 18syl6eq 2672 . . . . . 6  |-  ( ( x  =  A  /\  y  =  A )  ->  ( ( x { <. <. A ,  A >. ,  A >. } y ) { <. <. A ,  A >. ,  A >. } A )  =  A )
2313, 22sylan9eqr 2678 . . . . 5  |-  ( ( ( x  =  A  /\  y  =  A )  /\  z  =  A )  ->  (
( x { <. <. A ,  A >. ,  A >. } y ) { <. <. A ,  A >. ,  A >. } z )  =  A )
24233impa 1259 . . . 4  |-  ( ( x  =  A  /\  y  =  A  /\  z  =  A )  ->  ( ( x { <. <. A ,  A >. ,  A >. } y ) { <. <. A ,  A >. ,  A >. } z )  =  A )
25 oveq1 6657 . . . . . 6  |-  ( x  =  A  ->  (
x { <. <. A ,  A >. ,  A >. }  ( y { <. <. A ,  A >. ,  A >. } z ) )  =  ( A { <. <. A ,  A >. ,  A >. }  (
y { <. <. A ,  A >. ,  A >. } z ) ) )
26 oveq1 6657 . . . . . . . . 9  |-  ( y  =  A  ->  (
y { <. <. A ,  A >. ,  A >. } z )  =  ( A { <. <. A ,  A >. ,  A >. } z ) )
27 oveq2 6658 . . . . . . . . . 10  |-  ( z  =  A  ->  ( A { <. <. A ,  A >. ,  A >. } z )  =  ( A { <. <. A ,  A >. ,  A >. } A
) )
2827, 18syl6eq 2672 . . . . . . . . 9  |-  ( z  =  A  ->  ( A { <. <. A ,  A >. ,  A >. } z )  =  A )
2926, 28sylan9eq 2676 . . . . . . . 8  |-  ( ( y  =  A  /\  z  =  A )  ->  ( y { <. <. A ,  A >. ,  A >. } z )  =  A )
3029oveq2d 6666 . . . . . . 7  |-  ( ( y  =  A  /\  z  =  A )  ->  ( A { <. <. A ,  A >. ,  A >. }  ( y { <. <. A ,  A >. ,  A >. } z ) )  =  ( A { <. <. A ,  A >. ,  A >. } A ) )
3130, 18syl6eq 2672 . . . . . 6  |-  ( ( y  =  A  /\  z  =  A )  ->  ( A { <. <. A ,  A >. ,  A >. }  ( y { <. <. A ,  A >. ,  A >. } z ) )  =  A )
3225, 31sylan9eq 2676 . . . . 5  |-  ( ( x  =  A  /\  ( y  =  A  /\  z  =  A ) )  ->  (
x { <. <. A ,  A >. ,  A >. }  ( y { <. <. A ,  A >. ,  A >. } z ) )  =  A )
33323impb 1260 . . . 4  |-  ( ( x  =  A  /\  y  =  A  /\  z  =  A )  ->  ( x { <. <. A ,  A >. ,  A >. }  ( y { <. <. A ,  A >. ,  A >. } z ) )  =  A )
3424, 33eqtr4d 2659 . . 3  |-  ( ( x  =  A  /\  y  =  A  /\  z  =  A )  ->  ( ( x { <. <. A ,  A >. ,  A >. } y ) { <. <. A ,  A >. ,  A >. } z )  =  ( x { <. <. A ,  A >. ,  A >. }  ( y { <. <. A ,  A >. ,  A >. } z ) ) )
3510, 11, 12, 34syl3anb 1369 . 2  |-  ( ( x  e.  { A }  /\  y  e.  { A }  /\  z  e.  { A } )  ->  ( ( x { <. <. A ,  A >. ,  A >. } y ) { <. <. A ,  A >. ,  A >. } z )  =  ( x { <. <. A ,  A >. ,  A >. }  ( y { <. <. A ,  A >. ,  A >. } z ) ) )
363snid 4208 . 2  |-  A  e. 
{ A }
37 oveq2 6658 . . . . 5  |-  ( x  =  A  ->  ( A { <. <. A ,  A >. ,  A >. } x
)  =  ( A { <. <. A ,  A >. ,  A >. } A
) )
3837, 18syl6eq 2672 . . . 4  |-  ( x  =  A  ->  ( A { <. <. A ,  A >. ,  A >. } x
)  =  A )
39 id 22 . . . 4  |-  ( x  =  A  ->  x  =  A )
4038, 39eqtr4d 2659 . . 3  |-  ( x  =  A  ->  ( A { <. <. A ,  A >. ,  A >. } x
)  =  x )
4110, 40sylbi 207 . 2  |-  ( x  e.  { A }  ->  ( A { <. <. A ,  A >. ,  A >. } x )  =  x )
4236a1i 11 . 2  |-  ( x  e.  { A }  ->  A  e.  { A } )
4310, 38sylbi 207 . 2  |-  ( x  e.  { A }  ->  ( A { <. <. A ,  A >. ,  A >. } x )  =  A )
441, 9, 35, 36, 41, 42, 43isgrpoi 27352 1  |-  { <. <. A ,  A >. ,  A >. }  e.  GrpOp
Colors of variables: wff setvar class
Syntax hints:    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   _Vcvv 3200   {csn 4177   <.cop 4183    X. cxp 5112   -->wf 5884   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650   GrpOpcgr 27343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-grpo 27347
This theorem is referenced by:  gidsn  33751
  Copyright terms: Public domain W3C validator