| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > grposnOLD | Structured version Visualization version Unicode version | ||
| Description: The group operation for the singleton group. Obsolete, use grp1 17522. instead (Contributed by NM, 4-Nov-2006.) (New usage is discouraged.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| grposnOLD.1 |
|
| Ref | Expression |
|---|---|
| grposnOLD |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snex 4908 |
. 2
| |
| 2 | opex 4932 |
. . . . 5
| |
| 3 | grposnOLD.1 |
. . . . 5
| |
| 4 | 2, 3 | f1osn 6176 |
. . . 4
|
| 5 | f1of 6137 |
. . . 4
| |
| 6 | 4, 5 | ax-mp 5 |
. . 3
|
| 7 | 3, 3 | xpsn 6407 |
. . . 4
|
| 8 | 7 | feq2i 6037 |
. . 3
|
| 9 | 6, 8 | mpbir 221 |
. 2
|
| 10 | velsn 4193 |
. . 3
| |
| 11 | velsn 4193 |
. . 3
| |
| 12 | velsn 4193 |
. . 3
| |
| 13 | oveq2 6658 |
. . . . . 6
| |
| 14 | oveq1 6657 |
. . . . . . . . 9
| |
| 15 | oveq2 6658 |
. . . . . . . . . 10
| |
| 16 | df-ov 6653 |
. . . . . . . . . . 11
| |
| 17 | 2, 3 | fvsn 6446 |
. . . . . . . . . . 11
|
| 18 | 16, 17 | eqtri 2644 |
. . . . . . . . . 10
|
| 19 | 15, 18 | syl6eq 2672 |
. . . . . . . . 9
|
| 20 | 14, 19 | sylan9eq 2676 |
. . . . . . . 8
|
| 21 | 20 | oveq1d 6665 |
. . . . . . 7
|
| 22 | 21, 18 | syl6eq 2672 |
. . . . . 6
|
| 23 | 13, 22 | sylan9eqr 2678 |
. . . . 5
|
| 24 | 23 | 3impa 1259 |
. . . 4
|
| 25 | oveq1 6657 |
. . . . . 6
| |
| 26 | oveq1 6657 |
. . . . . . . . 9
| |
| 27 | oveq2 6658 |
. . . . . . . . . 10
| |
| 28 | 27, 18 | syl6eq 2672 |
. . . . . . . . 9
|
| 29 | 26, 28 | sylan9eq 2676 |
. . . . . . . 8
|
| 30 | 29 | oveq2d 6666 |
. . . . . . 7
|
| 31 | 30, 18 | syl6eq 2672 |
. . . . . 6
|
| 32 | 25, 31 | sylan9eq 2676 |
. . . . 5
|
| 33 | 32 | 3impb 1260 |
. . . 4
|
| 34 | 24, 33 | eqtr4d 2659 |
. . 3
|
| 35 | 10, 11, 12, 34 | syl3anb 1369 |
. 2
|
| 36 | 3 | snid 4208 |
. 2
|
| 37 | oveq2 6658 |
. . . . 5
| |
| 38 | 37, 18 | syl6eq 2672 |
. . . 4
|
| 39 | id 22 |
. . . 4
| |
| 40 | 38, 39 | eqtr4d 2659 |
. . 3
|
| 41 | 10, 40 | sylbi 207 |
. 2
|
| 42 | 36 | a1i 11 |
. 2
|
| 43 | 10, 38 | sylbi 207 |
. 2
|
| 44 | 1, 9, 35, 36, 41, 42, 43 | isgrpoi 27352 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-grpo 27347 |
| This theorem is referenced by: gidsn 33751 |
| Copyright terms: Public domain | W3C validator |