MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl6eqbrr Structured version   Visualization version   Unicode version

Theorem syl6eqbrr 4693
Description: A chained equality inference for a binary relation. (Contributed by NM, 4-Jan-2006.)
Hypotheses
Ref Expression
syl6eqbrr.1  |-  ( ph  ->  B  =  A )
syl6eqbrr.2  |-  B R C
Assertion
Ref Expression
syl6eqbrr  |-  ( ph  ->  A R C )

Proof of Theorem syl6eqbrr
StepHypRef Expression
1 syl6eqbrr.1 . . 3  |-  ( ph  ->  B  =  A )
21eqcomd 2628 . 2  |-  ( ph  ->  A  =  B )
3 syl6eqbrr.2 . 2  |-  B R C
42, 3syl6eqbr 4692 1  |-  ( ph  ->  A R C )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483   class class class wbr 4653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654
This theorem is referenced by:  grur1  9642  t1connperf  21239  basellem9  24815  sqff1o  24908  ballotlemic  30568  ballotlem1c  30569
  Copyright terms: Public domain W3C validator