MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  t1connperf Structured version   Visualization version   Unicode version

Theorem t1connperf 21239
Description: A connected T1 space is perfect, unless it is the topology of a singleton. (Contributed by Mario Carneiro, 26-Dec-2016.)
Hypothesis
Ref Expression
t1connperf.1  |-  X  = 
U. J
Assertion
Ref Expression
t1connperf  |-  ( ( J  e.  Fre  /\  J  e. Conn  /\  -.  X  ~~  1o )  ->  J  e. Perf )

Proof of Theorem t1connperf
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 t1connperf.1 . . . . . . . 8  |-  X  = 
U. J
2 simplr 792 . . . . . . . 8  |-  ( ( ( J  e.  Fre  /\  J  e. Conn )  /\  ( x  e.  X  /\  { x }  e.  J ) )  ->  J  e. Conn )
3 simprr 796 . . . . . . . 8  |-  ( ( ( J  e.  Fre  /\  J  e. Conn )  /\  ( x  e.  X  /\  { x }  e.  J ) )  ->  { x }  e.  J )
4 vex 3203 . . . . . . . . . 10  |-  x  e. 
_V
54snnz 4309 . . . . . . . . 9  |-  { x }  =/=  (/)
65a1i 11 . . . . . . . 8  |-  ( ( ( J  e.  Fre  /\  J  e. Conn )  /\  ( x  e.  X  /\  { x }  e.  J ) )  ->  { x }  =/=  (/) )
71t1sncld 21130 . . . . . . . . 9  |-  ( ( J  e.  Fre  /\  x  e.  X )  ->  { x }  e.  ( Clsd `  J )
)
87ad2ant2r 783 . . . . . . . 8  |-  ( ( ( J  e.  Fre  /\  J  e. Conn )  /\  ( x  e.  X  /\  { x }  e.  J ) )  ->  { x }  e.  ( Clsd `  J )
)
91, 2, 3, 6, 8connclo 21218 . . . . . . 7  |-  ( ( ( J  e.  Fre  /\  J  e. Conn )  /\  ( x  e.  X  /\  { x }  e.  J ) )  ->  { x }  =  X )
104ensn1 8020 . . . . . . 7  |-  { x }  ~~  1o
119, 10syl6eqbrr 4693 . . . . . 6  |-  ( ( ( J  e.  Fre  /\  J  e. Conn )  /\  ( x  e.  X  /\  { x }  e.  J ) )  ->  X  ~~  1o )
1211rexlimdvaa 3032 . . . . 5  |-  ( ( J  e.  Fre  /\  J  e. Conn )  ->  ( E. x  e.  X  { x }  e.  J  ->  X  ~~  1o ) )
1312con3d 148 . . . 4  |-  ( ( J  e.  Fre  /\  J  e. Conn )  ->  ( -.  X  ~~  1o  ->  -.  E. x  e.  X  { x }  e.  J ) )
14 ralnex 2992 . . . 4  |-  ( A. x  e.  X  -.  { x }  e.  J  <->  -. 
E. x  e.  X  { x }  e.  J )
1513, 14syl6ibr 242 . . 3  |-  ( ( J  e.  Fre  /\  J  e. Conn )  ->  ( -.  X  ~~  1o  ->  A. x  e.  X  -.  { x }  e.  J ) )
16 t1top 21134 . . . . 5  |-  ( J  e.  Fre  ->  J  e.  Top )
1716adantr 481 . . . 4  |-  ( ( J  e.  Fre  /\  J  e. Conn )  ->  J  e.  Top )
181isperf3 20957 . . . . 5  |-  ( J  e. Perf 
<->  ( J  e.  Top  /\ 
A. x  e.  X  -.  { x }  e.  J ) )
1918baib 944 . . . 4  |-  ( J  e.  Top  ->  ( J  e. Perf  <->  A. x  e.  X  -.  { x }  e.  J ) )
2017, 19syl 17 . . 3  |-  ( ( J  e.  Fre  /\  J  e. Conn )  ->  ( J  e. Perf  <->  A. x  e.  X  -.  { x }  e.  J )
)
2115, 20sylibrd 249 . 2  |-  ( ( J  e.  Fre  /\  J  e. Conn )  ->  ( -.  X  ~~  1o  ->  J  e. Perf ) )
22213impia 1261 1  |-  ( ( J  e.  Fre  /\  J  e. Conn  /\  -.  X  ~~  1o )  ->  J  e. Perf )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   (/)c0 3915   {csn 4177   U.cuni 4436   class class class wbr 4653   ` cfv 5888   1oc1o 7553    ~~ cen 7952   Topctop 20698   Clsdccld 20820  Perfcperf 20939   Frect1 21111  Conncconn 21214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-1o 7560  df-en 7956  df-top 20699  df-cld 20823  df-ntr 20824  df-cls 20825  df-lp 20940  df-perf 20941  df-t1 21118  df-conn 21215
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator