| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ballotlemic | Structured version Visualization version Unicode version | ||
| Description: If the first vote is for B, the vote on the first tie is for A. (Contributed by Thierry Arnoux, 1-Dec-2016.) |
| Ref | Expression |
|---|---|
| ballotth.m |
|
| ballotth.n |
|
| ballotth.o |
|
| ballotth.p |
|
| ballotth.f |
|
| ballotth.e |
|
| ballotth.mgtn |
|
| ballotth.i |
|
| Ref | Expression |
|---|---|
| ballotlemic |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ballotth.m |
. . 3
| |
| 2 | ballotth.n |
. . 3
| |
| 3 | ballotth.o |
. . 3
| |
| 4 | ballotth.p |
. . 3
| |
| 5 | ballotth.f |
. . 3
| |
| 6 | eldifi 3732 |
. . . 4
| |
| 7 | 6 | ad2antrr 762 |
. . 3
|
| 8 | ballotth.e |
. . . . . . . . . 10
| |
| 9 | ballotth.mgtn |
. . . . . . . . . 10
| |
| 10 | ballotth.i |
. . . . . . . . . 10
| |
| 11 | 1, 2, 3, 4, 5, 8, 9, 10 | ballotlemiex 30563 |
. . . . . . . . 9
|
| 12 | 11 | simpld 475 |
. . . . . . . 8
|
| 13 | elfznn 12370 |
. . . . . . . 8
| |
| 14 | 12, 13 | syl 17 |
. . . . . . 7
|
| 15 | 14 | adantr 481 |
. . . . . 6
|
| 16 | 1, 2, 3, 4, 5, 8, 9, 10 | ballotlemi1 30564 |
. . . . . 6
|
| 17 | eluz2b3 11762 |
. . . . . 6
| |
| 18 | 15, 16, 17 | sylanbrc 698 |
. . . . 5
|
| 19 | uz2m1nn 11763 |
. . . . 5
| |
| 20 | 18, 19 | syl 17 |
. . . 4
|
| 21 | 20 | adantr 481 |
. . 3
|
| 22 | elnnuz 11724 |
. . . . . . 7
| |
| 23 | 22 | biimpi 206 |
. . . . . 6
|
| 24 | eluzfz1 12348 |
. . . . . 6
| |
| 25 | 20, 23, 24 | 3syl 18 |
. . . . 5
|
| 26 | 25 | adantr 481 |
. . . 4
|
| 27 | 1nn 11031 |
. . . . . . . . . . 11
| |
| 28 | 27 | a1i 11 |
. . . . . . . . . 10
|
| 29 | 1, 2, 3, 4, 5, 6, 28 | ballotlemfp1 30553 |
. . . . . . . . 9
|
| 30 | 29 | simpld 475 |
. . . . . . . 8
|
| 31 | 30 | imp 445 |
. . . . . . 7
|
| 32 | 1m1e0 11089 |
. . . . . . . . . 10
| |
| 33 | 32 | fveq2i 6194 |
. . . . . . . . 9
|
| 34 | 33 | oveq1i 6660 |
. . . . . . . 8
|
| 35 | 34 | a1i 11 |
. . . . . . 7
|
| 36 | 1, 2, 3, 4, 5 | ballotlemfval0 30557 |
. . . . . . . . . 10
|
| 37 | 6, 36 | syl 17 |
. . . . . . . . 9
|
| 38 | 37 | adantr 481 |
. . . . . . . 8
|
| 39 | 38 | oveq1d 6665 |
. . . . . . 7
|
| 40 | 31, 35, 39 | 3eqtrrd 2661 |
. . . . . 6
|
| 41 | 0le1 10551 |
. . . . . . 7
| |
| 42 | 0re 10040 |
. . . . . . . 8
| |
| 43 | 1re 10039 |
. . . . . . . 8
| |
| 44 | suble0 10542 |
. . . . . . . 8
| |
| 45 | 42, 43, 44 | mp2an 708 |
. . . . . . 7
|
| 46 | 41, 45 | mpbir 221 |
. . . . . 6
|
| 47 | 40, 46 | syl6eqbrr 4693 |
. . . . 5
|
| 48 | 47 | adantr 481 |
. . . 4
|
| 49 | fveq2 6191 |
. . . . . 6
| |
| 50 | 49 | breq1d 4663 |
. . . . 5
|
| 51 | 50 | rspcev 3309 |
. . . 4
|
| 52 | 26, 48, 51 | syl2anc 693 |
. . 3
|
| 53 | 0lt1 10550 |
. . . . 5
| |
| 54 | 1p0e1 11133 |
. . . . . 6
| |
| 55 | 1, 2, 3, 4, 5, 6, 14 | ballotlemfp1 30553 |
. . . . . . . . . 10
|
| 56 | 55 | simpld 475 |
. . . . . . . . 9
|
| 57 | 56 | imp 445 |
. . . . . . . 8
|
| 58 | 11 | simprd 479 |
. . . . . . . . 9
|
| 59 | 58 | adantr 481 |
. . . . . . . 8
|
| 60 | 57, 59 | eqtr3d 2658 |
. . . . . . 7
|
| 61 | 6 | adantr 481 |
. . . . . . . . . 10
|
| 62 | 14 | nnzd 11481 |
. . . . . . . . . . . 12
|
| 63 | 62 | adantr 481 |
. . . . . . . . . . 11
|
| 64 | 1zzd 11408 |
. . . . . . . . . . 11
| |
| 65 | 63, 64 | zsubcld 11487 |
. . . . . . . . . 10
|
| 66 | 1, 2, 3, 4, 5, 61, 65 | ballotlemfelz 30552 |
. . . . . . . . 9
|
| 67 | 66 | zcnd 11483 |
. . . . . . . 8
|
| 68 | 1cnd 10056 |
. . . . . . . 8
| |
| 69 | 0cnd 10033 |
. . . . . . . 8
| |
| 70 | 67, 68, 69 | subaddd 10410 |
. . . . . . 7
|
| 71 | 60, 70 | mpbid 222 |
. . . . . 6
|
| 72 | 54, 71 | syl5eqr 2670 |
. . . . 5
|
| 73 | 53, 72 | syl5breq 4690 |
. . . 4
|
| 74 | 73 | adantlr 751 |
. . 3
|
| 75 | 1, 2, 3, 4, 5, 7, 21, 52, 74 | ballotlemfc0 30554 |
. 2
|
| 76 | 1, 2, 3, 4, 5, 8, 9, 10 | ballotlemimin 30567 |
. . 3
|
| 77 | 76 | ad2antrr 762 |
. 2
|
| 78 | 75, 77 | condan 835 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-sup 8348 df-inf 8349 df-card 8765 df-cda 8990 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-n0 11293 df-z 11378 df-uz 11688 df-fz 12327 df-hash 13118 |
| This theorem is referenced by: ballotlem7 30597 |
| Copyright terms: Public domain | W3C validator |