MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grur1 Structured version   Visualization version   Unicode version

Theorem grur1 9642
Description: A characterization of Grothendieck universes, part 2. (Contributed by Mario Carneiro, 24-Jun-2013.)
Hypothesis
Ref Expression
gruina.1  |-  A  =  ( U  i^i  On )
Assertion
Ref Expression
grur1  |-  ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  ->  U  =  ( R1 `  A ) )

Proof of Theorem grur1
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nss 3663 . . . . 5  |-  ( -.  U  C_  ( R1 `  A )  <->  E. x
( x  e.  U  /\  -.  x  e.  ( R1 `  A ) ) )
2 fveq2 6191 . . . . . . . . . . . 12  |-  ( y  =  x  ->  ( rank `  y )  =  ( rank `  x
) )
32eqeq1d 2624 . . . . . . . . . . 11  |-  ( y  =  x  ->  (
( rank `  y )  =  A  <->  ( rank `  x
)  =  A ) )
43rspcev 3309 . . . . . . . . . 10  |-  ( ( x  e.  U  /\  ( rank `  x )  =  A )  ->  E. y  e.  U  ( rank `  y )  =  A )
54ex 450 . . . . . . . . 9  |-  ( x  e.  U  ->  (
( rank `  x )  =  A  ->  E. y  e.  U  ( rank `  y )  =  A ) )
65ad2antrl 764 . . . . . . . 8  |-  ( ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  /\  ( x  e.  U  /\  -.  x  e.  ( R1 `  A
) ) )  -> 
( ( rank `  x
)  =  A  ->  E. y  e.  U  ( rank `  y )  =  A ) )
7 simplr 792 . . . . . . . . . . . 12  |-  ( ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  /\  ( x  e.  U  /\  -.  x  e.  ( R1 `  A
) ) )  ->  U  e.  U. ( R1 " On ) )
8 simprl 794 . . . . . . . . . . . 12  |-  ( ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  /\  ( x  e.  U  /\  -.  x  e.  ( R1 `  A
) ) )  ->  x  e.  U )
9 r1elssi 8668 . . . . . . . . . . . . 13  |-  ( U  e.  U. ( R1
" On )  ->  U  C_  U. ( R1
" On ) )
109sseld 3602 . . . . . . . . . . . 12  |-  ( U  e.  U. ( R1
" On )  -> 
( x  e.  U  ->  x  e.  U. ( R1 " On ) ) )
117, 8, 10sylc 65 . . . . . . . . . . 11  |-  ( ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  /\  ( x  e.  U  /\  -.  x  e.  ( R1 `  A
) ) )  ->  x  e.  U. ( R1 " On ) )
12 tcrank 8747 . . . . . . . . . . 11  |-  ( x  e.  U. ( R1
" On )  -> 
( rank `  x )  =  ( rank " ( TC `  x ) ) )
1311, 12syl 17 . . . . . . . . . 10  |-  ( ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  /\  ( x  e.  U  /\  -.  x  e.  ( R1 `  A
) ) )  -> 
( rank `  x )  =  ( rank " ( TC `  x ) ) )
1413eleq2d 2687 . . . . . . . . 9  |-  ( ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  /\  ( x  e.  U  /\  -.  x  e.  ( R1 `  A
) ) )  -> 
( A  e.  (
rank `  x )  <->  A  e.  ( rank " ( TC `  x ) ) ) )
15 gruelss 9616 . . . . . . . . . . . 12  |-  ( ( U  e.  Univ  /\  x  e.  U )  ->  x  C_  U )
16 grutr 9615 . . . . . . . . . . . . 13  |-  ( U  e.  Univ  ->  Tr  U
)
1716adantr 481 . . . . . . . . . . . 12  |-  ( ( U  e.  Univ  /\  x  e.  U )  ->  Tr  U )
18 vex 3203 . . . . . . . . . . . . 13  |-  x  e. 
_V
19 tcmin 8617 . . . . . . . . . . . . 13  |-  ( x  e.  _V  ->  (
( x  C_  U  /\  Tr  U )  -> 
( TC `  x
)  C_  U )
)
2018, 19ax-mp 5 . . . . . . . . . . . 12  |-  ( ( x  C_  U  /\  Tr  U )  ->  ( TC `  x )  C_  U )
2115, 17, 20syl2anc 693 . . . . . . . . . . 11  |-  ( ( U  e.  Univ  /\  x  e.  U )  ->  ( TC `  x )  C_  U )
22 rankf 8657 . . . . . . . . . . . . 13  |-  rank : U. ( R1 " On ) --> On
23 ffun 6048 . . . . . . . . . . . . 13  |-  ( rank
: U. ( R1
" On ) --> On 
->  Fun  rank )
2422, 23ax-mp 5 . . . . . . . . . . . 12  |-  Fun  rank
25 fvelima 6248 . . . . . . . . . . . 12  |-  ( ( Fun  rank  /\  A  e.  ( rank " ( TC `  x ) ) )  ->  E. y  e.  ( TC `  x
) ( rank `  y
)  =  A )
2624, 25mpan 706 . . . . . . . . . . 11  |-  ( A  e.  ( rank " ( TC `  x ) )  ->  E. y  e.  ( TC `  x ) ( rank `  y
)  =  A )
27 ssrexv 3667 . . . . . . . . . . 11  |-  ( ( TC `  x ) 
C_  U  ->  ( E. y  e.  ( TC `  x ) (
rank `  y )  =  A  ->  E. y  e.  U  ( rank `  y )  =  A ) )
2821, 26, 27syl2im 40 . . . . . . . . . 10  |-  ( ( U  e.  Univ  /\  x  e.  U )  ->  ( A  e.  ( rank " ( TC `  x
) )  ->  E. y  e.  U  ( rank `  y )  =  A ) )
2928ad2ant2r 783 . . . . . . . . 9  |-  ( ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  /\  ( x  e.  U  /\  -.  x  e.  ( R1 `  A
) ) )  -> 
( A  e.  (
rank " ( TC `  x ) )  ->  E. y  e.  U  ( rank `  y )  =  A ) )
3014, 29sylbid 230 . . . . . . . 8  |-  ( ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  /\  ( x  e.  U  /\  -.  x  e.  ( R1 `  A
) ) )  -> 
( A  e.  (
rank `  x )  ->  E. y  e.  U  ( rank `  y )  =  A ) )
31 simprr 796 . . . . . . . . . 10  |-  ( ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  /\  ( x  e.  U  /\  -.  x  e.  ( R1 `  A
) ) )  ->  -.  x  e.  ( R1 `  A ) )
32 ne0i 3921 . . . . . . . . . . . . . . 15  |-  ( x  e.  U  ->  U  =/=  (/) )
33 gruina.1 . . . . . . . . . . . . . . . 16  |-  A  =  ( U  i^i  On )
3433gruina 9640 . . . . . . . . . . . . . . 15  |-  ( ( U  e.  Univ  /\  U  =/=  (/) )  ->  A  e.  Inacc )
3532, 34sylan2 491 . . . . . . . . . . . . . 14  |-  ( ( U  e.  Univ  /\  x  e.  U )  ->  A  e.  Inacc )
36 inawina 9512 . . . . . . . . . . . . . 14  |-  ( A  e.  Inacc  ->  A  e.  InaccW )
37 winaon 9510 . . . . . . . . . . . . . 14  |-  ( A  e.  InaccW  ->  A  e.  On )
3835, 36, 373syl 18 . . . . . . . . . . . . 13  |-  ( ( U  e.  Univ  /\  x  e.  U )  ->  A  e.  On )
39 r1fnon 8630 . . . . . . . . . . . . . 14  |-  R1  Fn  On
40 fndm 5990 . . . . . . . . . . . . . 14  |-  ( R1  Fn  On  ->  dom  R1  =  On )
4139, 40ax-mp 5 . . . . . . . . . . . . 13  |-  dom  R1  =  On
4238, 41syl6eleqr 2712 . . . . . . . . . . . 12  |-  ( ( U  e.  Univ  /\  x  e.  U )  ->  A  e.  dom  R1 )
4342ad2ant2r 783 . . . . . . . . . . 11  |-  ( ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  /\  ( x  e.  U  /\  -.  x  e.  ( R1 `  A
) ) )  ->  A  e.  dom  R1 )
44 rankr1ag 8665 . . . . . . . . . . 11  |-  ( ( x  e.  U. ( R1 " On )  /\  A  e.  dom  R1 )  ->  ( x  e.  ( R1 `  A
)  <->  ( rank `  x
)  e.  A ) )
4511, 43, 44syl2anc 693 . . . . . . . . . 10  |-  ( ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  /\  ( x  e.  U  /\  -.  x  e.  ( R1 `  A
) ) )  -> 
( x  e.  ( R1 `  A )  <-> 
( rank `  x )  e.  A ) )
4631, 45mtbid 314 . . . . . . . . 9  |-  ( ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  /\  ( x  e.  U  /\  -.  x  e.  ( R1 `  A
) ) )  ->  -.  ( rank `  x
)  e.  A )
47 rankon 8658 . . . . . . . . . . . . 13  |-  ( rank `  x )  e.  On
48 eloni 5733 . . . . . . . . . . . . . 14  |-  ( (
rank `  x )  e.  On  ->  Ord  ( rank `  x ) )
49 eloni 5733 . . . . . . . . . . . . . 14  |-  ( A  e.  On  ->  Ord  A )
50 ordtri3or 5755 . . . . . . . . . . . . . 14  |-  ( ( Ord  ( rank `  x
)  /\  Ord  A )  ->  ( ( rank `  x )  e.  A  \/  ( rank `  x
)  =  A  \/  A  e.  ( rank `  x ) ) )
5148, 49, 50syl2an 494 . . . . . . . . . . . . 13  |-  ( ( ( rank `  x
)  e.  On  /\  A  e.  On )  ->  ( ( rank `  x
)  e.  A  \/  ( rank `  x )  =  A  \/  A  e.  ( rank `  x
) ) )
5247, 38, 51sylancr 695 . . . . . . . . . . . 12  |-  ( ( U  e.  Univ  /\  x  e.  U )  ->  (
( rank `  x )  e.  A  \/  ( rank `  x )  =  A  \/  A  e.  ( rank `  x
) ) )
53 3orass 1040 . . . . . . . . . . . 12  |-  ( ( ( rank `  x
)  e.  A  \/  ( rank `  x )  =  A  \/  A  e.  ( rank `  x
) )  <->  ( ( rank `  x )  e.  A  \/  ( (
rank `  x )  =  A  \/  A  e.  ( rank `  x
) ) ) )
5452, 53sylib 208 . . . . . . . . . . 11  |-  ( ( U  e.  Univ  /\  x  e.  U )  ->  (
( rank `  x )  e.  A  \/  (
( rank `  x )  =  A  \/  A  e.  ( rank `  x
) ) ) )
5554ord 392 . . . . . . . . . 10  |-  ( ( U  e.  Univ  /\  x  e.  U )  ->  ( -.  ( rank `  x
)  e.  A  -> 
( ( rank `  x
)  =  A  \/  A  e.  ( rank `  x ) ) ) )
5655ad2ant2r 783 . . . . . . . . 9  |-  ( ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  /\  ( x  e.  U  /\  -.  x  e.  ( R1 `  A
) ) )  -> 
( -.  ( rank `  x )  e.  A  ->  ( ( rank `  x
)  =  A  \/  A  e.  ( rank `  x ) ) ) )
5746, 56mpd 15 . . . . . . . 8  |-  ( ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  /\  ( x  e.  U  /\  -.  x  e.  ( R1 `  A
) ) )  -> 
( ( rank `  x
)  =  A  \/  A  e.  ( rank `  x ) ) )
586, 30, 57mpjaod 396 . . . . . . 7  |-  ( ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  /\  ( x  e.  U  /\  -.  x  e.  ( R1 `  A
) ) )  ->  E. y  e.  U  ( rank `  y )  =  A )
5958ex 450 . . . . . 6  |-  ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  ->  (
( x  e.  U  /\  -.  x  e.  ( R1 `  A ) )  ->  E. y  e.  U  ( rank `  y )  =  A ) )
6059exlimdv 1861 . . . . 5  |-  ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  ->  ( E. x ( x  e.  U  /\  -.  x  e.  ( R1 `  A
) )  ->  E. y  e.  U  ( rank `  y )  =  A ) )
611, 60syl5bi 232 . . . 4  |-  ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  ->  ( -.  U  C_  ( R1
`  A )  ->  E. y  e.  U  ( rank `  y )  =  A ) )
62 simpll 790 . . . . . . 7  |-  ( ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  /\  ( y  e.  U  /\  ( rank `  y )  =  A ) )  ->  U  e.  Univ )
63 ne0i 3921 . . . . . . . . . 10  |-  ( y  e.  U  ->  U  =/=  (/) )
6463, 34sylan2 491 . . . . . . . . 9  |-  ( ( U  e.  Univ  /\  y  e.  U )  ->  A  e.  Inacc )
6564ad2ant2r 783 . . . . . . . 8  |-  ( ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  /\  ( y  e.  U  /\  ( rank `  y )  =  A ) )  ->  A  e.  Inacc )
6665, 36, 373syl 18 . . . . . . 7  |-  ( ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  /\  ( y  e.  U  /\  ( rank `  y )  =  A ) )  ->  A  e.  On )
67 simprl 794 . . . . . . 7  |-  ( ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  /\  ( y  e.  U  /\  ( rank `  y )  =  A ) )  ->  y  e.  U )
68 fveq2 6191 . . . . . . . . . 10  |-  ( (
rank `  y )  =  A  ->  ( cf `  ( rank `  y
) )  =  ( cf `  A ) )
6968ad2antll 765 . . . . . . . . 9  |-  ( ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  /\  ( y  e.  U  /\  ( rank `  y )  =  A ) )  ->  ( cf `  ( rank `  y
) )  =  ( cf `  A ) )
70 elina 9509 . . . . . . . . . . 11  |-  ( A  e.  Inacc 
<->  ( A  =/=  (/)  /\  ( cf `  A )  =  A  /\  A. x  e.  A  ~P x  ~<  A ) )
7170simp2bi 1077 . . . . . . . . . 10  |-  ( A  e.  Inacc  ->  ( cf `  A )  =  A )
7265, 71syl 17 . . . . . . . . 9  |-  ( ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  /\  ( y  e.  U  /\  ( rank `  y )  =  A ) )  ->  ( cf `  A )  =  A )
7369, 72eqtrd 2656 . . . . . . . 8  |-  ( ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  /\  ( y  e.  U  /\  ( rank `  y )  =  A ) )  ->  ( cf `  ( rank `  y
) )  =  A )
74 rankcf 9599 . . . . . . . . 9  |-  -.  y  ~<  ( cf `  ( rank `  y ) )
75 fvex 6201 . . . . . . . . . 10  |-  ( cf `  ( rank `  y
) )  e.  _V
76 vex 3203 . . . . . . . . . 10  |-  y  e. 
_V
77 domtri 9378 . . . . . . . . . 10  |-  ( ( ( cf `  ( rank `  y ) )  e.  _V  /\  y  e.  _V )  ->  (
( cf `  ( rank `  y ) )  ~<_  y  <->  -.  y  ~<  ( cf `  ( rank `  y ) ) ) )
7875, 76, 77mp2an 708 . . . . . . . . 9  |-  ( ( cf `  ( rank `  y ) )  ~<_  y  <->  -.  y  ~<  ( cf `  ( rank `  y
) ) )
7974, 78mpbir 221 . . . . . . . 8  |-  ( cf `  ( rank `  y
) )  ~<_  y
8073, 79syl6eqbrr 4693 . . . . . . 7  |-  ( ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  /\  ( y  e.  U  /\  ( rank `  y )  =  A ) )  ->  A  ~<_  y )
81 grudomon 9639 . . . . . . 7  |-  ( ( U  e.  Univ  /\  A  e.  On  /\  ( y  e.  U  /\  A  ~<_  y ) )  ->  A  e.  U )
8262, 66, 67, 80, 81syl112anc 1330 . . . . . 6  |-  ( ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  /\  ( y  e.  U  /\  ( rank `  y )  =  A ) )  ->  A  e.  U )
83 elin 3796 . . . . . . . . 9  |-  ( A  e.  ( U  i^i  On )  <->  ( A  e.  U  /\  A  e.  On ) )
8483biimpri 218 . . . . . . . 8  |-  ( ( A  e.  U  /\  A  e.  On )  ->  A  e.  ( U  i^i  On ) )
8584, 33syl6eleqr 2712 . . . . . . 7  |-  ( ( A  e.  U  /\  A  e.  On )  ->  A  e.  A )
86 ordirr 5741 . . . . . . . . 9  |-  ( Ord 
A  ->  -.  A  e.  A )
8749, 86syl 17 . . . . . . . 8  |-  ( A  e.  On  ->  -.  A  e.  A )
8887adantl 482 . . . . . . 7  |-  ( ( A  e.  U  /\  A  e.  On )  ->  -.  A  e.  A
)
8985, 88pm2.21dd 186 . . . . . 6  |-  ( ( A  e.  U  /\  A  e.  On )  ->  U  C_  ( R1 `  A ) )
9082, 66, 89syl2anc 693 . . . . 5  |-  ( ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  /\  ( y  e.  U  /\  ( rank `  y )  =  A ) )  ->  U  C_  ( R1 `  A
) )
9190rexlimdvaa 3032 . . . 4  |-  ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  ->  ( E. y  e.  U  ( rank `  y )  =  A  ->  U  C_  ( R1 `  A ) ) )
9261, 91syld 47 . . 3  |-  ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  ->  ( -.  U  C_  ( R1
`  A )  ->  U  C_  ( R1 `  A ) ) )
9392pm2.18d 124 . 2  |-  ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  ->  U  C_  ( R1 `  A
) )
9433grur1a 9641 . . 3  |-  ( U  e.  Univ  ->  ( R1
`  A )  C_  U )
9594adantr 481 . 2  |-  ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  ->  ( R1 `  A )  C_  U )
9693, 95eqssd 3620 1  |-  ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  ->  U  =  ( R1 `  A ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    \/ w3o 1036    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   _Vcvv 3200    i^i cin 3573    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   U.cuni 4436   class class class wbr 4653   Tr wtr 4752   dom cdm 5114   "cima 5117   Ord word 5722   Oncon0 5723   Fun wfun 5882    Fn wfn 5883   -->wf 5884   ` cfv 5888    ~<_ cdom 7953    ~< csdm 7954   TCctc 8612   R1cr1 8625   rankcrnk 8626   cfccf 8763   InaccWcwina 9504   Inacccina 9505   Univcgru 9612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-ac2 9285
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-tc 8613  df-r1 8627  df-rank 8628  df-card 8765  df-cf 8767  df-acn 8768  df-ac 8939  df-wina 9506  df-ina 9507  df-gru 9613
This theorem is referenced by:  grutsk  9644  bj-grur1  33023
  Copyright terms: Public domain W3C validator