MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylanblrc Structured version   Visualization version   Unicode version

Theorem sylanblrc 697
Description: Syllogism inference combined with a biconditional. (Contributed by BJ, 25-Apr-2019.)
Hypotheses
Ref Expression
sylanblrc.1  |-  ( ph  ->  ps )
sylanblrc.2  |-  ch
sylanblrc.3  |-  ( th  <->  ( ps  /\  ch )
)
Assertion
Ref Expression
sylanblrc  |-  ( ph  ->  th )

Proof of Theorem sylanblrc
StepHypRef Expression
1 sylanblrc.1 . 2  |-  ( ph  ->  ps )
2 sylanblrc.2 . 2  |-  ch
3 sylanblrc.3 . . 3  |-  ( th  <->  ( ps  /\  ch )
)
43biimpri 218 . 2  |-  ( ( ps  /\  ch )  ->  th )
51, 2, 4sylancl 694 1  |-  ( ph  ->  th )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 386
This theorem is referenced by:  fnwelem  7292  tfrlem10  7483  gruina  9640  dfac14  21421  1trld  27002  1stmbfm  30322  2ndmbfm  30323  bj-projval  32984  rfcnpre1  39178
  Copyright terms: Public domain W3C validator