MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylanblrc Structured version   Visualization version   GIF version

Theorem sylanblrc 697
Description: Syllogism inference combined with a biconditional. (Contributed by BJ, 25-Apr-2019.)
Hypotheses
Ref Expression
sylanblrc.1 (𝜑𝜓)
sylanblrc.2 𝜒
sylanblrc.3 (𝜃 ↔ (𝜓𝜒))
Assertion
Ref Expression
sylanblrc (𝜑𝜃)

Proof of Theorem sylanblrc
StepHypRef Expression
1 sylanblrc.1 . 2 (𝜑𝜓)
2 sylanblrc.2 . 2 𝜒
3 sylanblrc.3 . . 3 (𝜃 ↔ (𝜓𝜒))
43biimpri 218 . 2 ((𝜓𝜒) → 𝜃)
51, 2, 4sylancl 694 1 (𝜑𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 386
This theorem is referenced by:  fnwelem  7292  tfrlem10  7483  gruina  9640  dfac14  21421  1trld  27002  1stmbfm  30322  2ndmbfm  30323  bj-projval  32984  rfcnpre1  39178
  Copyright terms: Public domain W3C validator