![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sylanblrc | Structured version Visualization version GIF version |
Description: Syllogism inference combined with a biconditional. (Contributed by BJ, 25-Apr-2019.) |
Ref | Expression |
---|---|
sylanblrc.1 | ⊢ (𝜑 → 𝜓) |
sylanblrc.2 | ⊢ 𝜒 |
sylanblrc.3 | ⊢ (𝜃 ↔ (𝜓 ∧ 𝜒)) |
Ref | Expression |
---|---|
sylanblrc | ⊢ (𝜑 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylanblrc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | sylanblrc.2 | . 2 ⊢ 𝜒 | |
3 | sylanblrc.3 | . . 3 ⊢ (𝜃 ↔ (𝜓 ∧ 𝜒)) | |
4 | 3 | biimpri 218 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
5 | 1, 2, 4 | sylancl 694 | 1 ⊢ (𝜑 → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 386 |
This theorem is referenced by: fnwelem 7292 tfrlem10 7483 gruina 9640 dfac14 21421 1trld 27002 1stmbfm 30322 2ndmbfm 30323 bj-projval 32984 rfcnpre1 39178 |
Copyright terms: Public domain | W3C validator |