MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac14 Structured version   Visualization version   Unicode version

Theorem dfac14 21421
Description: Theorem ptcls 21419 is an equivalent of the axiom of choice. (Contributed by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
dfac14  |-  (CHOICE  <->  A. f
( f : dom  f
--> Top  ->  A. s  e.  X_  k  e.  dom  f ~P U. ( f `
 k ) ( ( cls `  ( Xt_ `  f ) ) `
 X_ k  e.  dom  f ( s `  k ) )  = 
X_ k  e.  dom  f ( ( cls `  ( f `  k
) ) `  (
s `  k )
) ) )
Distinct variable group:    f, k, s

Proof of Theorem dfac14
Dummy variables  g  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6191 . . . . . . . . . 10  |-  ( k  =  x  ->  (
f `  k )  =  ( f `  x ) )
21unieqd 4446 . . . . . . . . 9  |-  ( k  =  x  ->  U. (
f `  k )  =  U. ( f `  x ) )
32pweqd 4163 . . . . . . . 8  |-  ( k  =  x  ->  ~P U. ( f `  k
)  =  ~P U. ( f `  x
) )
43cbvixpv 7926 . . . . . . 7  |-  X_ k  e.  dom  f ~P U. ( f `  k
)  =  X_ x  e.  dom  f ~P U. ( f `  x
)
54eleq2i 2693 . . . . . 6  |-  ( s  e.  X_ k  e.  dom  f ~P U. ( f `
 k )  <->  s  e.  X_ x  e.  dom  f ~P U. ( f `  x ) )
6 simplr 792 . . . . . . . . . . 11  |-  ( ( (CHOICE 
/\  f : dom  f
--> Top )  /\  s  e.  X_ x  e.  dom  f ~P U. ( f `
 x ) )  ->  f : dom  f
--> Top )
76feqmptd 6249 . . . . . . . . . 10  |-  ( ( (CHOICE 
/\  f : dom  f
--> Top )  /\  s  e.  X_ x  e.  dom  f ~P U. ( f `
 x ) )  ->  f  =  ( k  e.  dom  f  |->  ( f `  k
) ) )
87fveq2d 6195 . . . . . . . . 9  |-  ( ( (CHOICE 
/\  f : dom  f
--> Top )  /\  s  e.  X_ x  e.  dom  f ~P U. ( f `
 x ) )  ->  ( Xt_ `  f
)  =  ( Xt_ `  ( k  e.  dom  f  |->  ( f `  k ) ) ) )
98fveq2d 6195 . . . . . . . 8  |-  ( ( (CHOICE 
/\  f : dom  f
--> Top )  /\  s  e.  X_ x  e.  dom  f ~P U. ( f `
 x ) )  ->  ( cls `  ( Xt_ `  f ) )  =  ( cls `  ( Xt_ `  ( k  e. 
dom  f  |->  ( f `
 k ) ) ) ) )
109fveq1d 6193 . . . . . . 7  |-  ( ( (CHOICE 
/\  f : dom  f
--> Top )  /\  s  e.  X_ x  e.  dom  f ~P U. ( f `
 x ) )  ->  ( ( cls `  ( Xt_ `  f
) ) `  X_ k  e.  dom  f ( s `
 k ) )  =  ( ( cls `  ( Xt_ `  (
k  e.  dom  f  |->  ( f `  k
) ) ) ) `
 X_ k  e.  dom  f ( s `  k ) ) )
11 eqid 2622 . . . . . . . 8  |-  ( Xt_ `  ( k  e.  dom  f  |->  ( f `  k ) ) )  =  ( Xt_ `  (
k  e.  dom  f  |->  ( f `  k
) ) )
12 vex 3203 . . . . . . . . . 10  |-  f  e. 
_V
1312dmex 7099 . . . . . . . . 9  |-  dom  f  e.  _V
1413a1i 11 . . . . . . . 8  |-  ( ( (CHOICE 
/\  f : dom  f
--> Top )  /\  s  e.  X_ x  e.  dom  f ~P U. ( f `
 x ) )  ->  dom  f  e.  _V )
156ffvelrnda 6359 . . . . . . . . 9  |-  ( ( ( (CHOICE 
/\  f : dom  f
--> Top )  /\  s  e.  X_ x  e.  dom  f ~P U. ( f `
 x ) )  /\  k  e.  dom  f )  ->  (
f `  k )  e.  Top )
16 eqid 2622 . . . . . . . . . 10  |-  U. (
f `  k )  =  U. ( f `  k )
1716toptopon 20722 . . . . . . . . 9  |-  ( ( f `  k )  e.  Top  <->  ( f `  k )  e.  (TopOn `  U. ( f `  k ) ) )
1815, 17sylib 208 . . . . . . . 8  |-  ( ( ( (CHOICE 
/\  f : dom  f
--> Top )  /\  s  e.  X_ x  e.  dom  f ~P U. ( f `
 x ) )  /\  k  e.  dom  f )  ->  (
f `  k )  e.  (TopOn `  U. ( f `
 k ) ) )
19 simpr 477 . . . . . . . . . . . 12  |-  ( ( (CHOICE 
/\  f : dom  f
--> Top )  /\  s  e.  X_ x  e.  dom  f ~P U. ( f `
 x ) )  ->  s  e.  X_ x  e.  dom  f ~P
U. ( f `  x ) )
2019, 5sylibr 224 . . . . . . . . . . 11  |-  ( ( (CHOICE 
/\  f : dom  f
--> Top )  /\  s  e.  X_ x  e.  dom  f ~P U. ( f `
 x ) )  ->  s  e.  X_ k  e.  dom  f ~P
U. ( f `  k ) )
21 vex 3203 . . . . . . . . . . . . 13  |-  s  e. 
_V
2221elixp 7915 . . . . . . . . . . . 12  |-  ( s  e.  X_ k  e.  dom  f ~P U. ( f `
 k )  <->  ( s  Fn  dom  f  /\  A. k  e.  dom  f ( s `  k )  e.  ~P U. (
f `  k )
) )
2322simprbi 480 . . . . . . . . . . 11  |-  ( s  e.  X_ k  e.  dom  f ~P U. ( f `
 k )  ->  A. k  e.  dom  f ( s `  k )  e.  ~P U. ( f `  k
) )
2420, 23syl 17 . . . . . . . . . 10  |-  ( ( (CHOICE 
/\  f : dom  f
--> Top )  /\  s  e.  X_ x  e.  dom  f ~P U. ( f `
 x ) )  ->  A. k  e.  dom  f ( s `  k )  e.  ~P U. ( f `  k
) )
2524r19.21bi 2932 . . . . . . . . 9  |-  ( ( ( (CHOICE 
/\  f : dom  f
--> Top )  /\  s  e.  X_ x  e.  dom  f ~P U. ( f `
 x ) )  /\  k  e.  dom  f )  ->  (
s `  k )  e.  ~P U. ( f `
 k ) )
2625elpwid 4170 . . . . . . . 8  |-  ( ( ( (CHOICE 
/\  f : dom  f
--> Top )  /\  s  e.  X_ x  e.  dom  f ~P U. ( f `
 x ) )  /\  k  e.  dom  f )  ->  (
s `  k )  C_ 
U. ( f `  k ) )
27 fvex 6201 . . . . . . . . . 10  |-  ( s `
 k )  e. 
_V
2813, 27iunex 7147 . . . . . . . . 9  |-  U_ k  e.  dom  f ( s `
 k )  e. 
_V
29 simpll 790 . . . . . . . . . 10  |-  ( ( (CHOICE 
/\  f : dom  f
--> Top )  /\  s  e.  X_ x  e.  dom  f ~P U. ( f `
 x ) )  -> CHOICE
)
30 acacni 8962 . . . . . . . . . 10  |-  ( (CHOICE  /\  dom  f  e.  _V )  -> AC  dom  f  =  _V )
3129, 13, 30sylancl 694 . . . . . . . . 9  |-  ( ( (CHOICE 
/\  f : dom  f
--> Top )  /\  s  e.  X_ x  e.  dom  f ~P U. ( f `
 x ) )  -> AC  dom  f  =  _V )
3228, 31syl5eleqr 2708 . . . . . . . 8  |-  ( ( (CHOICE 
/\  f : dom  f
--> Top )  /\  s  e.  X_ x  e.  dom  f ~P U. ( f `
 x ) )  ->  U_ k  e.  dom  f ( s `  k )  e. AC  dom  f
)
3311, 14, 18, 26, 32ptclsg 21418 . . . . . . 7  |-  ( ( (CHOICE 
/\  f : dom  f
--> Top )  /\  s  e.  X_ x  e.  dom  f ~P U. ( f `
 x ) )  ->  ( ( cls `  ( Xt_ `  (
k  e.  dom  f  |->  ( f `  k
) ) ) ) `
 X_ k  e.  dom  f ( s `  k ) )  = 
X_ k  e.  dom  f ( ( cls `  ( f `  k
) ) `  (
s `  k )
) )
3410, 33eqtrd 2656 . . . . . 6  |-  ( ( (CHOICE 
/\  f : dom  f
--> Top )  /\  s  e.  X_ x  e.  dom  f ~P U. ( f `
 x ) )  ->  ( ( cls `  ( Xt_ `  f
) ) `  X_ k  e.  dom  f ( s `
 k ) )  =  X_ k  e.  dom  f ( ( cls `  ( f `  k
) ) `  (
s `  k )
) )
355, 34sylan2b 492 . . . . 5  |-  ( ( (CHOICE 
/\  f : dom  f
--> Top )  /\  s  e.  X_ k  e.  dom  f ~P U. ( f `
 k ) )  ->  ( ( cls `  ( Xt_ `  f
) ) `  X_ k  e.  dom  f ( s `
 k ) )  =  X_ k  e.  dom  f ( ( cls `  ( f `  k
) ) `  (
s `  k )
) )
3635ralrimiva 2966 . . . 4  |-  ( (CHOICE  /\  f : dom  f --> Top )  ->  A. s  e.  X_  k  e.  dom  f ~P U. ( f `
 k ) ( ( cls `  ( Xt_ `  f ) ) `
 X_ k  e.  dom  f ( s `  k ) )  = 
X_ k  e.  dom  f ( ( cls `  ( f `  k
) ) `  (
s `  k )
) )
3736ex 450 . . 3  |-  (CHOICE  ->  (
f : dom  f --> Top  ->  A. s  e.  X_  k  e.  dom  f ~P
U. ( f `  k ) ( ( cls `  ( Xt_ `  f ) ) `  X_ k  e.  dom  f
( s `  k
) )  =  X_ k  e.  dom  f ( ( cls `  (
f `  k )
) `  ( s `  k ) ) ) )
3837alrimiv 1855 . 2  |-  (CHOICE  ->  A. f
( f : dom  f
--> Top  ->  A. s  e.  X_  k  e.  dom  f ~P U. ( f `
 k ) ( ( cls `  ( Xt_ `  f ) ) `
 X_ k  e.  dom  f ( s `  k ) )  = 
X_ k  e.  dom  f ( ( cls `  ( f `  k
) ) `  (
s `  k )
) ) )
39 vex 3203 . . . . . . . 8  |-  g  e. 
_V
4039dmex 7099 . . . . . . 7  |-  dom  g  e.  _V
4140a1i 11 . . . . . 6  |-  ( ( A. f ( f : dom  f --> Top 
->  A. s  e.  X_  k  e.  dom  f ~P
U. ( f `  k ) ( ( cls `  ( Xt_ `  f ) ) `  X_ k  e.  dom  f
( s `  k
) )  =  X_ k  e.  dom  f ( ( cls `  (
f `  k )
) `  ( s `  k ) ) )  /\  ( Fun  g  /\  (/)  e/  ran  g
) )  ->  dom  g  e.  _V )
42 fvex 6201 . . . . . . 7  |-  ( g `
 x )  e. 
_V
4342a1i 11 . . . . . 6  |-  ( ( ( A. f ( f : dom  f --> Top  ->  A. s  e.  X_  k  e.  dom  f ~P
U. ( f `  k ) ( ( cls `  ( Xt_ `  f ) ) `  X_ k  e.  dom  f
( s `  k
) )  =  X_ k  e.  dom  f ( ( cls `  (
f `  k )
) `  ( s `  k ) ) )  /\  ( Fun  g  /\  (/)  e/  ran  g
) )  /\  x  e.  dom  g )  -> 
( g `  x
)  e.  _V )
44 simplrr 801 . . . . . . . 8  |-  ( ( ( A. f ( f : dom  f --> Top  ->  A. s  e.  X_  k  e.  dom  f ~P
U. ( f `  k ) ( ( cls `  ( Xt_ `  f ) ) `  X_ k  e.  dom  f
( s `  k
) )  =  X_ k  e.  dom  f ( ( cls `  (
f `  k )
) `  ( s `  k ) ) )  /\  ( Fun  g  /\  (/)  e/  ran  g
) )  /\  x  e.  dom  g )  ->  (/) 
e/  ran  g )
45 df-nel 2898 . . . . . . . 8  |-  ( (/)  e/ 
ran  g  <->  -.  (/)  e.  ran  g )
4644, 45sylib 208 . . . . . . 7  |-  ( ( ( A. f ( f : dom  f --> Top  ->  A. s  e.  X_  k  e.  dom  f ~P
U. ( f `  k ) ( ( cls `  ( Xt_ `  f ) ) `  X_ k  e.  dom  f
( s `  k
) )  =  X_ k  e.  dom  f ( ( cls `  (
f `  k )
) `  ( s `  k ) ) )  /\  ( Fun  g  /\  (/)  e/  ran  g
) )  /\  x  e.  dom  g )  ->  -.  (/)  e.  ran  g
)
47 funforn 6122 . . . . . . . . . . . 12  |-  ( Fun  g  <->  g : dom  g -onto-> ran  g )
48 fof 6115 . . . . . . . . . . . 12  |-  ( g : dom  g -onto-> ran  g  ->  g : dom  g --> ran  g )
4947, 48sylbi 207 . . . . . . . . . . 11  |-  ( Fun  g  ->  g : dom  g --> ran  g )
5049ad2antrl 764 . . . . . . . . . 10  |-  ( ( A. f ( f : dom  f --> Top 
->  A. s  e.  X_  k  e.  dom  f ~P
U. ( f `  k ) ( ( cls `  ( Xt_ `  f ) ) `  X_ k  e.  dom  f
( s `  k
) )  =  X_ k  e.  dom  f ( ( cls `  (
f `  k )
) `  ( s `  k ) ) )  /\  ( Fun  g  /\  (/)  e/  ran  g
) )  ->  g : dom  g --> ran  g
)
5150ffvelrnda 6359 . . . . . . . . 9  |-  ( ( ( A. f ( f : dom  f --> Top  ->  A. s  e.  X_  k  e.  dom  f ~P
U. ( f `  k ) ( ( cls `  ( Xt_ `  f ) ) `  X_ k  e.  dom  f
( s `  k
) )  =  X_ k  e.  dom  f ( ( cls `  (
f `  k )
) `  ( s `  k ) ) )  /\  ( Fun  g  /\  (/)  e/  ran  g
) )  /\  x  e.  dom  g )  -> 
( g `  x
)  e.  ran  g
)
52 eleq1 2689 . . . . . . . . 9  |-  ( ( g `  x )  =  (/)  ->  ( ( g `  x )  e.  ran  g  <->  (/)  e.  ran  g ) )
5351, 52syl5ibcom 235 . . . . . . . 8  |-  ( ( ( A. f ( f : dom  f --> Top  ->  A. s  e.  X_  k  e.  dom  f ~P
U. ( f `  k ) ( ( cls `  ( Xt_ `  f ) ) `  X_ k  e.  dom  f
( s `  k
) )  =  X_ k  e.  dom  f ( ( cls `  (
f `  k )
) `  ( s `  k ) ) )  /\  ( Fun  g  /\  (/)  e/  ran  g
) )  /\  x  e.  dom  g )  -> 
( ( g `  x )  =  (/)  -> 
(/)  e.  ran  g ) )
5453necon3bd 2808 . . . . . . 7  |-  ( ( ( A. f ( f : dom  f --> Top  ->  A. s  e.  X_  k  e.  dom  f ~P
U. ( f `  k ) ( ( cls `  ( Xt_ `  f ) ) `  X_ k  e.  dom  f
( s `  k
) )  =  X_ k  e.  dom  f ( ( cls `  (
f `  k )
) `  ( s `  k ) ) )  /\  ( Fun  g  /\  (/)  e/  ran  g
) )  /\  x  e.  dom  g )  -> 
( -.  (/)  e.  ran  g  ->  ( g `  x )  =/=  (/) ) )
5546, 54mpd 15 . . . . . 6  |-  ( ( ( A. f ( f : dom  f --> Top  ->  A. s  e.  X_  k  e.  dom  f ~P
U. ( f `  k ) ( ( cls `  ( Xt_ `  f ) ) `  X_ k  e.  dom  f
( s `  k
) )  =  X_ k  e.  dom  f ( ( cls `  (
f `  k )
) `  ( s `  k ) ) )  /\  ( Fun  g  /\  (/)  e/  ran  g
) )  /\  x  e.  dom  g )  -> 
( g `  x
)  =/=  (/) )
56 eqid 2622 . . . . . 6  |-  ~P U. ( g `  x
)  =  ~P U. ( g `  x
)
57 eqid 2622 . . . . . 6  |-  { y  e.  ~P ( ( g `  x )  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) }  =  {
y  e.  ~P (
( g `  x
)  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) }
58 eqid 2622 . . . . . 6  |-  ( Xt_ `  ( x  e.  dom  g  |->  { y  e. 
~P ( ( g `
 x )  u. 
{ ~P U. (
g `  x ) } )  |  ( ~P U. ( g `
 x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } ) )  =  ( Xt_ `  (
x  e.  dom  g  |->  { y  e.  ~P ( ( g `  x )  u.  { ~P U. ( g `  x ) } )  |  ( ~P U. ( g `  x
)  e.  y  -> 
y  =  ( ( g `  x )  u.  { ~P U. ( g `  x
) } ) ) } ) )
59 simprl 794 . . . . . . . . 9  |-  ( ( A. f ( f : dom  f --> Top 
->  A. s  e.  X_  k  e.  dom  f ~P
U. ( f `  k ) ( ( cls `  ( Xt_ `  f ) ) `  X_ k  e.  dom  f
( s `  k
) )  =  X_ k  e.  dom  f ( ( cls `  (
f `  k )
) `  ( s `  k ) ) )  /\  ( Fun  g  /\  (/)  e/  ran  g
) )  ->  Fun  g )
60 funfn 5918 . . . . . . . . 9  |-  ( Fun  g  <->  g  Fn  dom  g )
6159, 60sylib 208 . . . . . . . 8  |-  ( ( A. f ( f : dom  f --> Top 
->  A. s  e.  X_  k  e.  dom  f ~P
U. ( f `  k ) ( ( cls `  ( Xt_ `  f ) ) `  X_ k  e.  dom  f
( s `  k
) )  =  X_ k  e.  dom  f ( ( cls `  (
f `  k )
) `  ( s `  k ) ) )  /\  ( Fun  g  /\  (/)  e/  ran  g
) )  ->  g  Fn  dom  g )
62 ssun1 3776 . . . . . . . . . 10  |-  ( g `
 k )  C_  ( ( g `  k )  u.  { ~P U. ( g `  k ) } )
63 fvex 6201 . . . . . . . . . . 11  |-  ( g `
 k )  e. 
_V
6463elpw 4164 . . . . . . . . . 10  |-  ( ( g `  k )  e.  ~P ( ( g `  k )  u.  { ~P U. ( g `  k
) } )  <->  ( g `  k )  C_  (
( g `  k
)  u.  { ~P U. ( g `  k
) } ) )
6562, 64mpbir 221 . . . . . . . . 9  |-  ( g `
 k )  e. 
~P ( ( g `
 k )  u. 
{ ~P U. (
g `  k ) } )
6665rgenw 2924 . . . . . . . 8  |-  A. k  e.  dom  g ( g `
 k )  e. 
~P ( ( g `
 k )  u. 
{ ~P U. (
g `  k ) } )
6739elixp 7915 . . . . . . . 8  |-  ( g  e.  X_ k  e.  dom  g ~P ( ( g `
 k )  u. 
{ ~P U. (
g `  k ) } )  <->  ( g  Fn  dom  g  /\  A. k  e.  dom  g ( g `  k )  e.  ~P ( ( g `  k )  u.  { ~P U. ( g `  k
) } ) ) )
6861, 66, 67sylanblrc 697 . . . . . . 7  |-  ( ( A. f ( f : dom  f --> Top 
->  A. s  e.  X_  k  e.  dom  f ~P
U. ( f `  k ) ( ( cls `  ( Xt_ `  f ) ) `  X_ k  e.  dom  f
( s `  k
) )  =  X_ k  e.  dom  f ( ( cls `  (
f `  k )
) `  ( s `  k ) ) )  /\  ( Fun  g  /\  (/)  e/  ran  g
) )  ->  g  e.  X_ k  e.  dom  g ~P ( ( g `
 k )  u. 
{ ~P U. (
g `  k ) } ) )
69 simpl 473 . . . . . . . 8  |-  ( ( A. f ( f : dom  f --> Top 
->  A. s  e.  X_  k  e.  dom  f ~P
U. ( f `  k ) ( ( cls `  ( Xt_ `  f ) ) `  X_ k  e.  dom  f
( s `  k
) )  =  X_ k  e.  dom  f ( ( cls `  (
f `  k )
) `  ( s `  k ) ) )  /\  ( Fun  g  /\  (/)  e/  ran  g
) )  ->  A. f
( f : dom  f
--> Top  ->  A. s  e.  X_  k  e.  dom  f ~P U. ( f `
 k ) ( ( cls `  ( Xt_ `  f ) ) `
 X_ k  e.  dom  f ( s `  k ) )  = 
X_ k  e.  dom  f ( ( cls `  ( f `  k
) ) `  (
s `  k )
) ) )
70 snex 4908 . . . . . . . . . . . . 13  |-  { ~P U. ( g `  x
) }  e.  _V
7142, 70unex 6956 . . . . . . . . . . . 12  |-  ( ( g `  x )  u.  { ~P U. ( g `  x
) } )  e. 
_V
72 ssun2 3777 . . . . . . . . . . . . 13  |-  { ~P U. ( g `  x
) }  C_  (
( g `  x
)  u.  { ~P U. ( g `  x
) } )
7342uniex 6953 . . . . . . . . . . . . . . 15  |-  U. (
g `  x )  e.  _V
7473pwex 4848 . . . . . . . . . . . . . 14  |-  ~P U. ( g `  x
)  e.  _V
7574snid 4208 . . . . . . . . . . . . 13  |-  ~P U. ( g `  x
)  e.  { ~P U. ( g `  x
) }
7672, 75sselii 3600 . . . . . . . . . . . 12  |-  ~P U. ( g `  x
)  e.  ( ( g `  x )  u.  { ~P U. ( g `  x
) } )
77 epttop 20813 . . . . . . . . . . . 12  |-  ( ( ( ( g `  x )  u.  { ~P U. ( g `  x ) } )  e.  _V  /\  ~P U. ( g `  x
)  e.  ( ( g `  x )  u.  { ~P U. ( g `  x
) } ) )  ->  { y  e. 
~P ( ( g `
 x )  u. 
{ ~P U. (
g `  x ) } )  |  ( ~P U. ( g `
 x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) }  e.  (TopOn `  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) )
7871, 76, 77mp2an 708 . . . . . . . . . . 11  |-  { y  e.  ~P ( ( g `  x )  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) }  e.  (TopOn `  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) )
7978topontopi 20720 . . . . . . . . . 10  |-  { y  e.  ~P ( ( g `  x )  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) }  e.  Top
8079a1i 11 . . . . . . . . 9  |-  ( ( ( A. f ( f : dom  f --> Top  ->  A. s  e.  X_  k  e.  dom  f ~P
U. ( f `  k ) ( ( cls `  ( Xt_ `  f ) ) `  X_ k  e.  dom  f
( s `  k
) )  =  X_ k  e.  dom  f ( ( cls `  (
f `  k )
) `  ( s `  k ) ) )  /\  ( Fun  g  /\  (/)  e/  ran  g
) )  /\  x  e.  dom  g )  ->  { y  e.  ~P ( ( g `  x )  u.  { ~P U. ( g `  x ) } )  |  ( ~P U. ( g `  x
)  e.  y  -> 
y  =  ( ( g `  x )  u.  { ~P U. ( g `  x
) } ) ) }  e.  Top )
81 eqid 2622 . . . . . . . . 9  |-  ( x  e.  dom  g  |->  { y  e.  ~P (
( g `  x
)  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } )  =  ( x  e.  dom  g  |->  { y  e. 
~P ( ( g `
 x )  u. 
{ ~P U. (
g `  x ) } )  |  ( ~P U. ( g `
 x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } )
8280, 81fmptd 6385 . . . . . . . 8  |-  ( ( A. f ( f : dom  f --> Top 
->  A. s  e.  X_  k  e.  dom  f ~P
U. ( f `  k ) ( ( cls `  ( Xt_ `  f ) ) `  X_ k  e.  dom  f
( s `  k
) )  =  X_ k  e.  dom  f ( ( cls `  (
f `  k )
) `  ( s `  k ) ) )  /\  ( Fun  g  /\  (/)  e/  ran  g
) )  ->  (
x  e.  dom  g  |->  { y  e.  ~P ( ( g `  x )  u.  { ~P U. ( g `  x ) } )  |  ( ~P U. ( g `  x
)  e.  y  -> 
y  =  ( ( g `  x )  u.  { ~P U. ( g `  x
) } ) ) } ) : dom  g
--> Top )
8340mptex 6486 . . . . . . . . 9  |-  ( x  e.  dom  g  |->  { y  e.  ~P (
( g `  x
)  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } )  e. 
_V
84 id 22 . . . . . . . . . . 11  |-  ( f  =  ( x  e. 
dom  g  |->  { y  e.  ~P ( ( g `  x )  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } )  -> 
f  =  ( x  e.  dom  g  |->  { y  e.  ~P (
( g `  x
)  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } ) )
85 dmeq 5324 . . . . . . . . . . . 12  |-  ( f  =  ( x  e. 
dom  g  |->  { y  e.  ~P ( ( g `  x )  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } )  ->  dom  f  =  dom  ( x  e.  dom  g  |->  { y  e. 
~P ( ( g `
 x )  u. 
{ ~P U. (
g `  x ) } )  |  ( ~P U. ( g `
 x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } ) )
8671pwex 4848 . . . . . . . . . . . . . 14  |-  ~P (
( g `  x
)  u.  { ~P U. ( g `  x
) } )  e. 
_V
8786rabex 4813 . . . . . . . . . . . . 13  |-  { y  e.  ~P ( ( g `  x )  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) }  e.  _V
8887, 81dmmpti 6023 . . . . . . . . . . . 12  |-  dom  (
x  e.  dom  g  |->  { y  e.  ~P ( ( g `  x )  u.  { ~P U. ( g `  x ) } )  |  ( ~P U. ( g `  x
)  e.  y  -> 
y  =  ( ( g `  x )  u.  { ~P U. ( g `  x
) } ) ) } )  =  dom  g
8985, 88syl6eq 2672 . . . . . . . . . . 11  |-  ( f  =  ( x  e. 
dom  g  |->  { y  e.  ~P ( ( g `  x )  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } )  ->  dom  f  =  dom  g )
9084, 89feq12d 6033 . . . . . . . . . 10  |-  ( f  =  ( x  e. 
dom  g  |->  { y  e.  ~P ( ( g `  x )  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } )  -> 
( f : dom  f
--> Top  <->  ( x  e. 
dom  g  |->  { y  e.  ~P ( ( g `  x )  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } ) : dom  g --> Top )
)
9189ixpeq1d 7920 . . . . . . . . . . . 12  |-  ( f  =  ( x  e. 
dom  g  |->  { y  e.  ~P ( ( g `  x )  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } )  ->  X_ k  e.  dom  f ~P U. ( f `  k )  =  X_ k  e.  dom  g ~P
U. ( f `  k ) )
92 fveq1 6190 . . . . . . . . . . . . . . . . 17  |-  ( f  =  ( x  e. 
dom  g  |->  { y  e.  ~P ( ( g `  x )  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } )  -> 
( f `  k
)  =  ( ( x  e.  dom  g  |->  { y  e.  ~P ( ( g `  x )  u.  { ~P U. ( g `  x ) } )  |  ( ~P U. ( g `  x
)  e.  y  -> 
y  =  ( ( g `  x )  u.  { ~P U. ( g `  x
) } ) ) } ) `  k
) )
93 fveq2 6191 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  =  k  ->  (
g `  x )  =  ( g `  k ) )
9493unieqd 4446 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x  =  k  ->  U. (
g `  x )  =  U. ( g `  k ) )
9594pweqd 4163 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  =  k  ->  ~P U. ( g `  x
)  =  ~P U. ( g `  k
) )
9695sneqd 4189 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  =  k  ->  { ~P U. ( g `  x
) }  =  { ~P U. ( g `  k ) } )
9793, 96uneq12d 3768 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  k  ->  (
( g `  x
)  u.  { ~P U. ( g `  x
) } )  =  ( ( g `  k )  u.  { ~P U. ( g `  k ) } ) )
9897pweqd 4163 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  k  ->  ~P ( ( g `  x )  u.  { ~P U. ( g `  x ) } )  =  ~P ( ( g `  k )  u.  { ~P U. ( g `  k
) } ) )
9995eleq1d 2686 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  k  ->  ( ~P U. ( g `  x )  e.  y  <->  ~P U. ( g `  k )  e.  y ) )
10097eqeq2d 2632 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  k  ->  (
y  =  ( ( g `  x )  u.  { ~P U. ( g `  x
) } )  <->  y  =  ( ( g `  k )  u.  { ~P U. ( g `  k ) } ) ) )
10199, 100imbi12d 334 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  k  ->  (
( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) )  <->  ( ~P U. ( g `  k
)  e.  y  -> 
y  =  ( ( g `  k )  u.  { ~P U. ( g `  k
) } ) ) ) )
10298, 101rabeqbidv 3195 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  k  ->  { y  e.  ~P ( ( g `  x )  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) }  =  {
y  e.  ~P (
( g `  k
)  u.  { ~P U. ( g `  k
) } )  |  ( ~P U. (
g `  k )  e.  y  ->  y  =  ( ( g `  k )  u.  { ~P U. ( g `  k ) } ) ) } )
103 snex 4908 . . . . . . . . . . . . . . . . . . . . 21  |-  { ~P U. ( g `  k
) }  e.  _V
10463, 103unex 6956 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( g `  k )  u.  { ~P U. ( g `  k
) } )  e. 
_V
105104pwex 4848 . . . . . . . . . . . . . . . . . . 19  |-  ~P (
( g `  k
)  u.  { ~P U. ( g `  k
) } )  e. 
_V
106105rabex 4813 . . . . . . . . . . . . . . . . . 18  |-  { y  e.  ~P ( ( g `  k )  u.  { ~P U. ( g `  k
) } )  |  ( ~P U. (
g `  k )  e.  y  ->  y  =  ( ( g `  k )  u.  { ~P U. ( g `  k ) } ) ) }  e.  _V
107102, 81, 106fvmpt 6282 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  dom  g  -> 
( ( x  e. 
dom  g  |->  { y  e.  ~P ( ( g `  x )  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } ) `  k )  =  {
y  e.  ~P (
( g `  k
)  u.  { ~P U. ( g `  k
) } )  |  ( ~P U. (
g `  k )  e.  y  ->  y  =  ( ( g `  k )  u.  { ~P U. ( g `  k ) } ) ) } )
10892, 107sylan9eq 2676 . . . . . . . . . . . . . . . 16  |-  ( ( f  =  ( x  e.  dom  g  |->  { y  e.  ~P (
( g `  x
)  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } )  /\  k  e.  dom  g )  ->  ( f `  k )  =  {
y  e.  ~P (
( g `  k
)  u.  { ~P U. ( g `  k
) } )  |  ( ~P U. (
g `  k )  e.  y  ->  y  =  ( ( g `  k )  u.  { ~P U. ( g `  k ) } ) ) } )
109108unieqd 4446 . . . . . . . . . . . . . . 15  |-  ( ( f  =  ( x  e.  dom  g  |->  { y  e.  ~P (
( g `  x
)  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } )  /\  k  e.  dom  g )  ->  U. ( f `  k )  =  U. { y  e.  ~P ( ( g `  k )  u.  { ~P U. ( g `  k ) } )  |  ( ~P U. ( g `  k
)  e.  y  -> 
y  =  ( ( g `  k )  u.  { ~P U. ( g `  k
) } ) ) } )
110 ssun2 3777 . . . . . . . . . . . . . . . . . 18  |-  { ~P U. ( g `  k
) }  C_  (
( g `  k
)  u.  { ~P U. ( g `  k
) } )
11163uniex 6953 . . . . . . . . . . . . . . . . . . . 20  |-  U. (
g `  k )  e.  _V
112111pwex 4848 . . . . . . . . . . . . . . . . . . 19  |-  ~P U. ( g `  k
)  e.  _V
113112snid 4208 . . . . . . . . . . . . . . . . . 18  |-  ~P U. ( g `  k
)  e.  { ~P U. ( g `  k
) }
114110, 113sselii 3600 . . . . . . . . . . . . . . . . 17  |-  ~P U. ( g `  k
)  e.  ( ( g `  k )  u.  { ~P U. ( g `  k
) } )
115 epttop 20813 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( g `  k )  u.  { ~P U. ( g `  k ) } )  e.  _V  /\  ~P U. ( g `  k
)  e.  ( ( g `  k )  u.  { ~P U. ( g `  k
) } ) )  ->  { y  e. 
~P ( ( g `
 k )  u. 
{ ~P U. (
g `  k ) } )  |  ( ~P U. ( g `
 k )  e.  y  ->  y  =  ( ( g `  k )  u.  { ~P U. ( g `  k ) } ) ) }  e.  (TopOn `  ( ( g `  k )  u.  { ~P U. ( g `  k ) } ) ) )
116104, 114, 115mp2an 708 . . . . . . . . . . . . . . . 16  |-  { y  e.  ~P ( ( g `  k )  u.  { ~P U. ( g `  k
) } )  |  ( ~P U. (
g `  k )  e.  y  ->  y  =  ( ( g `  k )  u.  { ~P U. ( g `  k ) } ) ) }  e.  (TopOn `  ( ( g `  k )  u.  { ~P U. ( g `  k ) } ) )
117116toponunii 20721 . . . . . . . . . . . . . . 15  |-  ( ( g `  k )  u.  { ~P U. ( g `  k
) } )  = 
U. { y  e. 
~P ( ( g `
 k )  u. 
{ ~P U. (
g `  k ) } )  |  ( ~P U. ( g `
 k )  e.  y  ->  y  =  ( ( g `  k )  u.  { ~P U. ( g `  k ) } ) ) }
118109, 117syl6eqr 2674 . . . . . . . . . . . . . 14  |-  ( ( f  =  ( x  e.  dom  g  |->  { y  e.  ~P (
( g `  x
)  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } )  /\  k  e.  dom  g )  ->  U. ( f `  k )  =  ( ( g `  k
)  u.  { ~P U. ( g `  k
) } ) )
119118pweqd 4163 . . . . . . . . . . . . 13  |-  ( ( f  =  ( x  e.  dom  g  |->  { y  e.  ~P (
( g `  x
)  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } )  /\  k  e.  dom  g )  ->  ~P U. (
f `  k )  =  ~P ( ( g `
 k )  u. 
{ ~P U. (
g `  k ) } ) )
120119ixpeq2dva 7923 . . . . . . . . . . . 12  |-  ( f  =  ( x  e. 
dom  g  |->  { y  e.  ~P ( ( g `  x )  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } )  ->  X_ k  e.  dom  g ~P U. ( f `  k )  =  X_ k  e.  dom  g ~P ( ( g `  k )  u.  { ~P U. ( g `  k ) } ) )
12191, 120eqtrd 2656 . . . . . . . . . . 11  |-  ( f  =  ( x  e. 
dom  g  |->  { y  e.  ~P ( ( g `  x )  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } )  ->  X_ k  e.  dom  f ~P U. ( f `  k )  =  X_ k  e.  dom  g ~P ( ( g `  k )  u.  { ~P U. ( g `  k ) } ) )
122 fveq2 6191 . . . . . . . . . . . . . 14  |-  ( f  =  ( x  e. 
dom  g  |->  { y  e.  ~P ( ( g `  x )  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } )  -> 
( Xt_ `  f )  =  ( Xt_ `  (
x  e.  dom  g  |->  { y  e.  ~P ( ( g `  x )  u.  { ~P U. ( g `  x ) } )  |  ( ~P U. ( g `  x
)  e.  y  -> 
y  =  ( ( g `  x )  u.  { ~P U. ( g `  x
) } ) ) } ) ) )
123122fveq2d 6195 . . . . . . . . . . . . 13  |-  ( f  =  ( x  e. 
dom  g  |->  { y  e.  ~P ( ( g `  x )  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } )  -> 
( cls `  ( Xt_ `  f ) )  =  ( cls `  ( Xt_ `  ( x  e. 
dom  g  |->  { y  e.  ~P ( ( g `  x )  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } ) ) ) )
12489ixpeq1d 7920 . . . . . . . . . . . . 13  |-  ( f  =  ( x  e. 
dom  g  |->  { y  e.  ~P ( ( g `  x )  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } )  ->  X_ k  e.  dom  f
( s `  k
)  =  X_ k  e.  dom  g ( s `
 k ) )
125123, 124fveq12d 6197 . . . . . . . . . . . 12  |-  ( f  =  ( x  e. 
dom  g  |->  { y  e.  ~P ( ( g `  x )  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } )  -> 
( ( cls `  ( Xt_ `  f ) ) `
 X_ k  e.  dom  f ( s `  k ) )  =  ( ( cls `  ( Xt_ `  ( x  e. 
dom  g  |->  { y  e.  ~P ( ( g `  x )  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } ) ) ) `  X_ k  e.  dom  g ( s `
 k ) ) )
12689ixpeq1d 7920 . . . . . . . . . . . . 13  |-  ( f  =  ( x  e. 
dom  g  |->  { y  e.  ~P ( ( g `  x )  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } )  ->  X_ k  e.  dom  f
( ( cls `  (
f `  k )
) `  ( s `  k ) )  = 
X_ k  e.  dom  g ( ( cls `  ( f `  k
) ) `  (
s `  k )
) )
127108fveq2d 6195 . . . . . . . . . . . . . . 15  |-  ( ( f  =  ( x  e.  dom  g  |->  { y  e.  ~P (
( g `  x
)  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } )  /\  k  e.  dom  g )  ->  ( cls `  (
f `  k )
)  =  ( cls `  { y  e.  ~P ( ( g `  k )  u.  { ~P U. ( g `  k ) } )  |  ( ~P U. ( g `  k
)  e.  y  -> 
y  =  ( ( g `  k )  u.  { ~P U. ( g `  k
) } ) ) } ) )
128127fveq1d 6193 . . . . . . . . . . . . . 14  |-  ( ( f  =  ( x  e.  dom  g  |->  { y  e.  ~P (
( g `  x
)  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } )  /\  k  e.  dom  g )  ->  ( ( cls `  ( f `  k
) ) `  (
s `  k )
)  =  ( ( cls `  { y  e.  ~P ( ( g `  k )  u.  { ~P U. ( g `  k
) } )  |  ( ~P U. (
g `  k )  e.  y  ->  y  =  ( ( g `  k )  u.  { ~P U. ( g `  k ) } ) ) } ) `  ( s `  k
) ) )
129128ixpeq2dva 7923 . . . . . . . . . . . . 13  |-  ( f  =  ( x  e. 
dom  g  |->  { y  e.  ~P ( ( g `  x )  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } )  ->  X_ k  e.  dom  g
( ( cls `  (
f `  k )
) `  ( s `  k ) )  = 
X_ k  e.  dom  g ( ( cls `  { y  e.  ~P ( ( g `  k )  u.  { ~P U. ( g `  k ) } )  |  ( ~P U. ( g `  k
)  e.  y  -> 
y  =  ( ( g `  k )  u.  { ~P U. ( g `  k
) } ) ) } ) `  (
s `  k )
) )
130126, 129eqtrd 2656 . . . . . . . . . . . 12  |-  ( f  =  ( x  e. 
dom  g  |->  { y  e.  ~P ( ( g `  x )  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } )  ->  X_ k  e.  dom  f
( ( cls `  (
f `  k )
) `  ( s `  k ) )  = 
X_ k  e.  dom  g ( ( cls `  { y  e.  ~P ( ( g `  k )  u.  { ~P U. ( g `  k ) } )  |  ( ~P U. ( g `  k
)  e.  y  -> 
y  =  ( ( g `  k )  u.  { ~P U. ( g `  k
) } ) ) } ) `  (
s `  k )
) )
131125, 130eqeq12d 2637 . . . . . . . . . . 11  |-  ( f  =  ( x  e. 
dom  g  |->  { y  e.  ~P ( ( g `  x )  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } )  -> 
( ( ( cls `  ( Xt_ `  f
) ) `  X_ k  e.  dom  f ( s `
 k ) )  =  X_ k  e.  dom  f ( ( cls `  ( f `  k
) ) `  (
s `  k )
)  <->  ( ( cls `  ( Xt_ `  (
x  e.  dom  g  |->  { y  e.  ~P ( ( g `  x )  u.  { ~P U. ( g `  x ) } )  |  ( ~P U. ( g `  x
)  e.  y  -> 
y  =  ( ( g `  x )  u.  { ~P U. ( g `  x
) } ) ) } ) ) ) `
 X_ k  e.  dom  g ( s `  k ) )  = 
X_ k  e.  dom  g ( ( cls `  { y  e.  ~P ( ( g `  k )  u.  { ~P U. ( g `  k ) } )  |  ( ~P U. ( g `  k
)  e.  y  -> 
y  =  ( ( g `  k )  u.  { ~P U. ( g `  k
) } ) ) } ) `  (
s `  k )
) ) )
132121, 131raleqbidv 3152 . . . . . . . . . 10  |-  ( f  =  ( x  e. 
dom  g  |->  { y  e.  ~P ( ( g `  x )  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } )  -> 
( A. s  e.  X_  k  e.  dom  f ~P U. ( f `
 k ) ( ( cls `  ( Xt_ `  f ) ) `
 X_ k  e.  dom  f ( s `  k ) )  = 
X_ k  e.  dom  f ( ( cls `  ( f `  k
) ) `  (
s `  k )
)  <->  A. s  e.  X_  k  e.  dom  g ~P ( ( g `  k )  u.  { ~P U. ( g `  k ) } ) ( ( cls `  ( Xt_ `  ( x  e. 
dom  g  |->  { y  e.  ~P ( ( g `  x )  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } ) ) ) `  X_ k  e.  dom  g ( s `
 k ) )  =  X_ k  e.  dom  g ( ( cls `  { y  e.  ~P ( ( g `  k )  u.  { ~P U. ( g `  k ) } )  |  ( ~P U. ( g `  k
)  e.  y  -> 
y  =  ( ( g `  k )  u.  { ~P U. ( g `  k
) } ) ) } ) `  (
s `  k )
) ) )
13390, 132imbi12d 334 . . . . . . . . 9  |-  ( f  =  ( x  e. 
dom  g  |->  { y  e.  ~P ( ( g `  x )  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } )  -> 
( ( f : dom  f --> Top  ->  A. s  e.  X_  k  e.  dom  f ~P U. ( f `  k
) ( ( cls `  ( Xt_ `  f
) ) `  X_ k  e.  dom  f ( s `
 k ) )  =  X_ k  e.  dom  f ( ( cls `  ( f `  k
) ) `  (
s `  k )
) )  <->  ( (
x  e.  dom  g  |->  { y  e.  ~P ( ( g `  x )  u.  { ~P U. ( g `  x ) } )  |  ( ~P U. ( g `  x
)  e.  y  -> 
y  =  ( ( g `  x )  u.  { ~P U. ( g `  x
) } ) ) } ) : dom  g
--> Top  ->  A. s  e.  X_  k  e.  dom  g ~P ( ( g `
 k )  u. 
{ ~P U. (
g `  k ) } ) ( ( cls `  ( Xt_ `  ( x  e.  dom  g  |->  { y  e. 
~P ( ( g `
 x )  u. 
{ ~P U. (
g `  x ) } )  |  ( ~P U. ( g `
 x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } ) ) ) `  X_ k  e.  dom  g ( s `
 k ) )  =  X_ k  e.  dom  g ( ( cls `  { y  e.  ~P ( ( g `  k )  u.  { ~P U. ( g `  k ) } )  |  ( ~P U. ( g `  k
)  e.  y  -> 
y  =  ( ( g `  k )  u.  { ~P U. ( g `  k
) } ) ) } ) `  (
s `  k )
) ) ) )
13483, 133spcv 3299 . . . . . . . 8  |-  ( A. f ( f : dom  f --> Top  ->  A. s  e.  X_  k  e.  dom  f ~P U. ( f `  k
) ( ( cls `  ( Xt_ `  f
) ) `  X_ k  e.  dom  f ( s `
 k ) )  =  X_ k  e.  dom  f ( ( cls `  ( f `  k
) ) `  (
s `  k )
) )  ->  (
( x  e.  dom  g  |->  { y  e. 
~P ( ( g `
 x )  u. 
{ ~P U. (
g `  x ) } )  |  ( ~P U. ( g `
 x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } ) : dom  g --> Top  ->  A. s  e.  X_  k  e.  dom  g ~P (
( g `  k
)  u.  { ~P U. ( g `  k
) } ) ( ( cls `  ( Xt_ `  ( x  e. 
dom  g  |->  { y  e.  ~P ( ( g `  x )  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } ) ) ) `  X_ k  e.  dom  g ( s `
 k ) )  =  X_ k  e.  dom  g ( ( cls `  { y  e.  ~P ( ( g `  k )  u.  { ~P U. ( g `  k ) } )  |  ( ~P U. ( g `  k
)  e.  y  -> 
y  =  ( ( g `  k )  u.  { ~P U. ( g `  k
) } ) ) } ) `  (
s `  k )
) ) )
13569, 82, 134sylc 65 . . . . . . 7  |-  ( ( A. f ( f : dom  f --> Top 
->  A. s  e.  X_  k  e.  dom  f ~P
U. ( f `  k ) ( ( cls `  ( Xt_ `  f ) ) `  X_ k  e.  dom  f
( s `  k
) )  =  X_ k  e.  dom  f ( ( cls `  (
f `  k )
) `  ( s `  k ) ) )  /\  ( Fun  g  /\  (/)  e/  ran  g
) )  ->  A. s  e.  X_  k  e.  dom  g ~P ( ( g `
 k )  u. 
{ ~P U. (
g `  k ) } ) ( ( cls `  ( Xt_ `  ( x  e.  dom  g  |->  { y  e. 
~P ( ( g `
 x )  u. 
{ ~P U. (
g `  x ) } )  |  ( ~P U. ( g `
 x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } ) ) ) `  X_ k  e.  dom  g ( s `
 k ) )  =  X_ k  e.  dom  g ( ( cls `  { y  e.  ~P ( ( g `  k )  u.  { ~P U. ( g `  k ) } )  |  ( ~P U. ( g `  k
)  e.  y  -> 
y  =  ( ( g `  k )  u.  { ~P U. ( g `  k
) } ) ) } ) `  (
s `  k )
) )
136 fveq1 6190 . . . . . . . . . . . 12  |-  ( s  =  g  ->  (
s `  k )  =  ( g `  k ) )
137136ixpeq2dv 7924 . . . . . . . . . . 11  |-  ( s  =  g  ->  X_ k  e.  dom  g ( s `
 k )  = 
X_ k  e.  dom  g ( g `  k ) )
138 fveq2 6191 . . . . . . . . . . . 12  |-  ( k  =  x  ->  (
g `  k )  =  ( g `  x ) )
139138cbvixpv 7926 . . . . . . . . . . 11  |-  X_ k  e.  dom  g ( g `
 k )  = 
X_ x  e.  dom  g ( g `  x )
140137, 139syl6eq 2672 . . . . . . . . . 10  |-  ( s  =  g  ->  X_ k  e.  dom  g ( s `
 k )  = 
X_ x  e.  dom  g ( g `  x ) )
141140fveq2d 6195 . . . . . . . . 9  |-  ( s  =  g  ->  (
( cls `  ( Xt_ `  ( x  e. 
dom  g  |->  { y  e.  ~P ( ( g `  x )  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } ) ) ) `  X_ k  e.  dom  g ( s `
 k ) )  =  ( ( cls `  ( Xt_ `  (
x  e.  dom  g  |->  { y  e.  ~P ( ( g `  x )  u.  { ~P U. ( g `  x ) } )  |  ( ~P U. ( g `  x
)  e.  y  -> 
y  =  ( ( g `  x )  u.  { ~P U. ( g `  x
) } ) ) } ) ) ) `
 X_ x  e.  dom  g ( g `  x ) ) )
142136fveq2d 6195 . . . . . . . . . . 11  |-  ( s  =  g  ->  (
( cls `  {
y  e.  ~P (
( g `  k
)  u.  { ~P U. ( g `  k
) } )  |  ( ~P U. (
g `  k )  e.  y  ->  y  =  ( ( g `  k )  u.  { ~P U. ( g `  k ) } ) ) } ) `  ( s `  k
) )  =  ( ( cls `  {
y  e.  ~P (
( g `  k
)  u.  { ~P U. ( g `  k
) } )  |  ( ~P U. (
g `  k )  e.  y  ->  y  =  ( ( g `  k )  u.  { ~P U. ( g `  k ) } ) ) } ) `  ( g `  k
) ) )
143142ixpeq2dv 7924 . . . . . . . . . 10  |-  ( s  =  g  ->  X_ k  e.  dom  g ( ( cls `  { y  e.  ~P ( ( g `  k )  u.  { ~P U. ( g `  k
) } )  |  ( ~P U. (
g `  k )  e.  y  ->  y  =  ( ( g `  k )  u.  { ~P U. ( g `  k ) } ) ) } ) `  ( s `  k
) )  =  X_ k  e.  dom  g ( ( cls `  {
y  e.  ~P (
( g `  k
)  u.  { ~P U. ( g `  k
) } )  |  ( ~P U. (
g `  k )  e.  y  ->  y  =  ( ( g `  k )  u.  { ~P U. ( g `  k ) } ) ) } ) `  ( g `  k
) ) )
144138unieqd 4446 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  x  ->  U. (
g `  k )  =  U. ( g `  x ) )
145144pweqd 4163 . . . . . . . . . . . . . . . . 17  |-  ( k  =  x  ->  ~P U. ( g `  k
)  =  ~P U. ( g `  x
) )
146145sneqd 4189 . . . . . . . . . . . . . . . 16  |-  ( k  =  x  ->  { ~P U. ( g `  k
) }  =  { ~P U. ( g `  x ) } )
147138, 146uneq12d 3768 . . . . . . . . . . . . . . 15  |-  ( k  =  x  ->  (
( g `  k
)  u.  { ~P U. ( g `  k
) } )  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) )
148147pweqd 4163 . . . . . . . . . . . . . 14  |-  ( k  =  x  ->  ~P ( ( g `  k )  u.  { ~P U. ( g `  k ) } )  =  ~P ( ( g `  x )  u.  { ~P U. ( g `  x
) } ) )
149145eleq1d 2686 . . . . . . . . . . . . . . 15  |-  ( k  =  x  ->  ( ~P U. ( g `  k )  e.  y  <->  ~P U. ( g `  x )  e.  y ) )
150147eqeq2d 2632 . . . . . . . . . . . . . . 15  |-  ( k  =  x  ->  (
y  =  ( ( g `  k )  u.  { ~P U. ( g `  k
) } )  <->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) )
151149, 150imbi12d 334 . . . . . . . . . . . . . 14  |-  ( k  =  x  ->  (
( ~P U. (
g `  k )  e.  y  ->  y  =  ( ( g `  k )  u.  { ~P U. ( g `  k ) } ) )  <->  ( ~P U. ( g `  x
)  e.  y  -> 
y  =  ( ( g `  x )  u.  { ~P U. ( g `  x
) } ) ) ) )
152148, 151rabeqbidv 3195 . . . . . . . . . . . . 13  |-  ( k  =  x  ->  { y  e.  ~P ( ( g `  k )  u.  { ~P U. ( g `  k
) } )  |  ( ~P U. (
g `  k )  e.  y  ->  y  =  ( ( g `  k )  u.  { ~P U. ( g `  k ) } ) ) }  =  {
y  e.  ~P (
( g `  x
)  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } )
153152fveq2d 6195 . . . . . . . . . . . 12  |-  ( k  =  x  ->  ( cls `  { y  e. 
~P ( ( g `
 k )  u. 
{ ~P U. (
g `  k ) } )  |  ( ~P U. ( g `
 k )  e.  y  ->  y  =  ( ( g `  k )  u.  { ~P U. ( g `  k ) } ) ) } )  =  ( cls `  {
y  e.  ~P (
( g `  x
)  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } ) )
154153, 138fveq12d 6197 . . . . . . . . . . 11  |-  ( k  =  x  ->  (
( cls `  {
y  e.  ~P (
( g `  k
)  u.  { ~P U. ( g `  k
) } )  |  ( ~P U. (
g `  k )  e.  y  ->  y  =  ( ( g `  k )  u.  { ~P U. ( g `  k ) } ) ) } ) `  ( g `  k
) )  =  ( ( cls `  {
y  e.  ~P (
( g `  x
)  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } ) `  ( g `  x
) ) )
155154cbvixpv 7926 . . . . . . . . . 10  |-  X_ k  e.  dom  g ( ( cls `  { y  e.  ~P ( ( g `  k )  u.  { ~P U. ( g `  k
) } )  |  ( ~P U. (
g `  k )  e.  y  ->  y  =  ( ( g `  k )  u.  { ~P U. ( g `  k ) } ) ) } ) `  ( g `  k
) )  =  X_ x  e.  dom  g ( ( cls `  {
y  e.  ~P (
( g `  x
)  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } ) `  ( g `  x
) )
156143, 155syl6eq 2672 . . . . . . . . 9  |-  ( s  =  g  ->  X_ k  e.  dom  g ( ( cls `  { y  e.  ~P ( ( g `  k )  u.  { ~P U. ( g `  k
) } )  |  ( ~P U. (
g `  k )  e.  y  ->  y  =  ( ( g `  k )  u.  { ~P U. ( g `  k ) } ) ) } ) `  ( s `  k
) )  =  X_ x  e.  dom  g ( ( cls `  {
y  e.  ~P (
( g `  x
)  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } ) `  ( g `  x
) ) )
157141, 156eqeq12d 2637 . . . . . . . 8  |-  ( s  =  g  ->  (
( ( cls `  ( Xt_ `  ( x  e. 
dom  g  |->  { y  e.  ~P ( ( g `  x )  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } ) ) ) `  X_ k  e.  dom  g ( s `
 k ) )  =  X_ k  e.  dom  g ( ( cls `  { y  e.  ~P ( ( g `  k )  u.  { ~P U. ( g `  k ) } )  |  ( ~P U. ( g `  k
)  e.  y  -> 
y  =  ( ( g `  k )  u.  { ~P U. ( g `  k
) } ) ) } ) `  (
s `  k )
)  <->  ( ( cls `  ( Xt_ `  (
x  e.  dom  g  |->  { y  e.  ~P ( ( g `  x )  u.  { ~P U. ( g `  x ) } )  |  ( ~P U. ( g `  x
)  e.  y  -> 
y  =  ( ( g `  x )  u.  { ~P U. ( g `  x
) } ) ) } ) ) ) `
 X_ x  e.  dom  g ( g `  x ) )  = 
X_ x  e.  dom  g ( ( cls `  { y  e.  ~P ( ( g `  x )  u.  { ~P U. ( g `  x ) } )  |  ( ~P U. ( g `  x
)  e.  y  -> 
y  =  ( ( g `  x )  u.  { ~P U. ( g `  x
) } ) ) } ) `  (
g `  x )
) ) )
158157rspcv 3305 . . . . . . 7  |-  ( g  e.  X_ k  e.  dom  g ~P ( ( g `
 k )  u. 
{ ~P U. (
g `  k ) } )  ->  ( A. s  e.  X_  k  e.  dom  g ~P (
( g `  k
)  u.  { ~P U. ( g `  k
) } ) ( ( cls `  ( Xt_ `  ( x  e. 
dom  g  |->  { y  e.  ~P ( ( g `  x )  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } ) ) ) `  X_ k  e.  dom  g ( s `
 k ) )  =  X_ k  e.  dom  g ( ( cls `  { y  e.  ~P ( ( g `  k )  u.  { ~P U. ( g `  k ) } )  |  ( ~P U. ( g `  k
)  e.  y  -> 
y  =  ( ( g `  k )  u.  { ~P U. ( g `  k
) } ) ) } ) `  (
s `  k )
)  ->  ( ( cls `  ( Xt_ `  (
x  e.  dom  g  |->  { y  e.  ~P ( ( g `  x )  u.  { ~P U. ( g `  x ) } )  |  ( ~P U. ( g `  x
)  e.  y  -> 
y  =  ( ( g `  x )  u.  { ~P U. ( g `  x
) } ) ) } ) ) ) `
 X_ x  e.  dom  g ( g `  x ) )  = 
X_ x  e.  dom  g ( ( cls `  { y  e.  ~P ( ( g `  x )  u.  { ~P U. ( g `  x ) } )  |  ( ~P U. ( g `  x
)  e.  y  -> 
y  =  ( ( g `  x )  u.  { ~P U. ( g `  x
) } ) ) } ) `  (
g `  x )
) ) )
15968, 135, 158sylc 65 . . . . . 6  |-  ( ( A. f ( f : dom  f --> Top 
->  A. s  e.  X_  k  e.  dom  f ~P
U. ( f `  k ) ( ( cls `  ( Xt_ `  f ) ) `  X_ k  e.  dom  f
( s `  k
) )  =  X_ k  e.  dom  f ( ( cls `  (
f `  k )
) `  ( s `  k ) ) )  /\  ( Fun  g  /\  (/)  e/  ran  g
) )  ->  (
( cls `  ( Xt_ `  ( x  e. 
dom  g  |->  { y  e.  ~P ( ( g `  x )  u.  { ~P U. ( g `  x
) } )  |  ( ~P U. (
g `  x )  e.  y  ->  y  =  ( ( g `  x )  u.  { ~P U. ( g `  x ) } ) ) } ) ) ) `  X_ x  e.  dom  g ( g `
 x ) )  =  X_ x  e.  dom  g ( ( cls `  { y  e.  ~P ( ( g `  x )  u.  { ~P U. ( g `  x ) } )  |  ( ~P U. ( g `  x
)  e.  y  -> 
y  =  ( ( g `  x )  u.  { ~P U. ( g `  x
) } ) ) } ) `  (
g `  x )
) )
16041, 43, 55, 56, 57, 58, 159dfac14lem 21420 . . . . 5  |-  ( ( A. f ( f : dom  f --> Top 
->  A. s  e.  X_  k  e.  dom  f ~P
U. ( f `  k ) ( ( cls `  ( Xt_ `  f ) ) `  X_ k  e.  dom  f
( s `  k
) )  =  X_ k  e.  dom  f ( ( cls `  (
f `  k )
) `  ( s `  k ) ) )  /\  ( Fun  g  /\  (/)  e/  ran  g
) )  ->  X_ x  e.  dom  g ( g `
 x )  =/=  (/) )
161160ex 450 . . . 4  |-  ( A. f ( f : dom  f --> Top  ->  A. s  e.  X_  k  e.  dom  f ~P U. ( f `  k
) ( ( cls `  ( Xt_ `  f
) ) `  X_ k  e.  dom  f ( s `
 k ) )  =  X_ k  e.  dom  f ( ( cls `  ( f `  k
) ) `  (
s `  k )
) )  ->  (
( Fun  g  /\  (/) 
e/  ran  g )  -> 
X_ x  e.  dom  g ( g `  x )  =/=  (/) ) )
162161alrimiv 1855 . . 3  |-  ( A. f ( f : dom  f --> Top  ->  A. s  e.  X_  k  e.  dom  f ~P U. ( f `  k
) ( ( cls `  ( Xt_ `  f
) ) `  X_ k  e.  dom  f ( s `
 k ) )  =  X_ k  e.  dom  f ( ( cls `  ( f `  k
) ) `  (
s `  k )
) )  ->  A. g
( ( Fun  g  /\  (/)  e/  ran  g
)  ->  X_ x  e. 
dom  g ( g `
 x )  =/=  (/) ) )
163 dfac9 8958 . . 3  |-  (CHOICE  <->  A. g
( ( Fun  g  /\  (/)  e/  ran  g
)  ->  X_ x  e. 
dom  g ( g `
 x )  =/=  (/) ) )
164162, 163sylibr 224 . 2  |-  ( A. f ( f : dom  f --> Top  ->  A. s  e.  X_  k  e.  dom  f ~P U. ( f `  k
) ( ( cls `  ( Xt_ `  f
) ) `  X_ k  e.  dom  f ( s `
 k ) )  =  X_ k  e.  dom  f ( ( cls `  ( f `  k
) ) `  (
s `  k )
) )  -> CHOICE )
16538, 164impbii 199 1  |-  (CHOICE  <->  A. f
( f : dom  f
--> Top  ->  A. s  e.  X_  k  e.  dom  f ~P U. ( f `
 k ) ( ( cls `  ( Xt_ `  f ) ) `
 X_ k  e.  dom  f ( s `  k ) )  = 
X_ k  e.  dom  f ( ( cls `  ( f `  k
) ) `  (
s `  k )
) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481    = wceq 1483    e. wcel 1990    =/= wne 2794    e/ wnel 2897   A.wral 2912   {crab 2916   _Vcvv 3200    u. cun 3572    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   {csn 4177   U.cuni 4436   U_ciun 4520    |-> cmpt 4729   dom cdm 5114   ran crn 5115   Fun wfun 5882    Fn wfn 5883   -->wf 5884   -onto->wfo 5886   ` cfv 5888   X_cixp 7908  AC wacn 8764  CHOICEwac 8938   Xt_cpt 16099   Topctop 20698  TopOnctopon 20715   clsccl 20822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-fin 7959  df-fi 8317  df-card 8765  df-acn 8768  df-ac 8939  df-topgen 16104  df-pt 16105  df-top 20699  df-topon 20716  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator