Step | Hyp | Ref
| Expression |
1 | | f1stres 7190 |
. . . 4
                |
2 | | 1stmbfm.1 |
. . . . . 6
  sigAlgebra |
3 | | 1stmbfm.2 |
. . . . . 6
  sigAlgebra |
4 | | sxuni 30256 |
. . . . . 6
   sigAlgebra
 sigAlgebra      
×s    |
5 | 2, 3, 4 | syl2anc 693 |
. . . . 5
      
×s    |
6 | 5 | feq2d 6031 |
. . . 4
    
            
         ×s        |
7 | 1, 6 | mpbii 223 |
. . 3
   
      
×s       |
8 | | unielsiga 30191 |
. . . . 5
  sigAlgebra    |
9 | 2, 8 | syl 17 |
. . . 4
    |
10 | | sxsiga 30254 |
. . . . . 6
   sigAlgebra
 sigAlgebra 
×s   sigAlgebra |
11 | 2, 3, 10 | syl2anc 693 |
. . . . 5
 
×s   sigAlgebra |
12 | | unielsiga 30191 |
. . . . 5
  ×s   sigAlgebra   ×s   ×s    |
13 | 11, 12 | syl 17 |
. . . 4
   ×s   ×s    |
14 | 9, 13 | elmapd 7871 |
. . 3
    
      
×s  
          ×s        |
15 | 7, 14 | mpbird 247 |
. 2
   
      
×s     |
16 | | sgon 30187 |
. . . . . . . . . . 11
  sigAlgebra sigAlgebra     |
17 | | sigasspw 30179 |
. . . . . . . . . . 11
 sigAlgebra       |
18 | | pwssb 4612 |
. . . . . . . . . . . 12
  

   |
19 | 18 | biimpi 206 |
. . . . . . . . . . 11
   
   |
20 | 2, 16, 17, 19 | 4syl 19 |
. . . . . . . . . 10
     |
21 | 20 | r19.21bi 2932 |
. . . . . . . . 9
 
    |
22 | | xpss1 5228 |
. . . . . . . . 9
    
      |
23 | 21, 22 | syl 17 |
. . . . . . . 8
 
   
      |
24 | 23 | sseld 3602 |
. . . . . . 7
 
            |
25 | 24 | pm4.71rd 667 |
. . . . . 6
 
                 |
26 | | ffn 6045 |
. . . . . . . 8
 
                          |
27 | | elpreima 6337 |
. . . . . . . 8
 
                    
      
            |
28 | 1, 26, 27 | mp2b 10 |
. . . . . . 7
   
              
           |
29 | | fvres 6207 |
. . . . . . . . . 10
        
            |
30 | 29 | eleq1d 2686 |
. . . . . . . . 9
                       |
31 | | 1st2nd2 7205 |
. . . . . . . . . 10
                  |
32 | | xp2nd 7199 |
. . . . . . . . . 10
            |
33 | | elxp6 7200 |
. . . . . . . . . . . 12
   
                          |
34 | | anass 681 |
. . . . . . . . . . . 12
             
          
                          |
35 | | an32 839 |
. . . . . . . . . . . 12
             
          
            
             |
36 | 33, 34, 35 | 3bitr2i 288 |
. . . . . . . . . . 11
   
            
             |
37 | 36 | baib 944 |
. . . . . . . . . 10
            
                 |
38 | 31, 32, 37 | syl2anc 693 |
. . . . . . . . 9
                |
39 | 30, 38 | bitr4d 271 |
. . . . . . . 8
                      |
40 | 39 | pm5.32i 669 |
. . . . . . 7
                            |
41 | 28, 40 | bitri 264 |
. . . . . 6
   
                   |
42 | 25, 41 | syl6rbbr 279 |
. . . . 5
 
      
            |
43 | 42 | eqrdv 2620 |
. . . 4
 
     
           |
44 | 2 | adantr 481 |
. . . . 5
 
 
sigAlgebra |
45 | 3 | adantr 481 |
. . . . 5
 
 
sigAlgebra |
46 | | simpr 477 |
. . . . 5
 
   |
47 | | eqid 2622 |
. . . . . . . 8
   |
48 | | issgon 30186 |
. . . . . . . 8
 sigAlgebra     sigAlgebra      |
49 | 3, 47, 48 | sylanblrc 697 |
. . . . . . 7
 sigAlgebra     |
50 | | baselsiga 30178 |
. . . . . . 7
 sigAlgebra      |
51 | 49, 50 | syl 17 |
. . . . . 6
    |
52 | 51 | adantr 481 |
. . . . 5
 
    |
53 | | elsx 30257 |
. . . . 5
    sigAlgebra
 sigAlgebra         ×s    |
54 | 44, 45, 46, 52, 53 | syl22anc 1327 |
. . . 4
 
     ×s    |
55 | 43, 54 | eqeltrd 2701 |
. . 3
 
     
       ×s    |
56 | 55 | ralrimiva 2966 |
. 2
      
       ×s    |
57 | 11, 2 | ismbfm 30314 |
. 2
    
    
×s  MblFnM    
      
×s        
       ×s      |
58 | 15, 56, 57 | mpbir2and 957 |
1
   
    
×s  MblFnM   |