MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfrlem10 Structured version   Visualization version   Unicode version

Theorem tfrlem10 7483
Description: Lemma for transfinite recursion. We define class  C by extending recs with one ordered pair. We will assume, falsely, that domain of recs is a member of, and thus not equal to,  On. Using this assumption we will prove facts about  C that will lead to a contradiction in tfrlem14 7487, thus showing the domain of recs does in fact equal  On. Here we show (under the false assumption) that  C is a function extending the domain of recs
( F ) by one. (Contributed by NM, 14-Aug-1994.) (Revised by Mario Carneiro, 9-May-2015.)
Hypotheses
Ref Expression
tfrlem.1  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
tfrlem.3  |-  C  =  (recs ( F )  u.  { <. dom recs ( F ) ,  ( F ` recs ( F
) ) >. } )
Assertion
Ref Expression
tfrlem10  |-  ( dom recs
( F )  e.  On  ->  C  Fn  suc  dom recs ( F ) )
Distinct variable groups:    x, f,
y, C    f, F, x, y
Allowed substitution hints:    A( x, y, f)

Proof of Theorem tfrlem10
StepHypRef Expression
1 fvex 6201 . . . . . 6  |-  ( F `
recs ( F ) )  e.  _V
2 funsng 5937 . . . . . 6  |-  ( ( dom recs ( F )  e.  On  /\  ( F ` recs ( F
) )  e.  _V )  ->  Fun  { <. dom recs ( F ) ,  ( F ` recs ( F
) ) >. } )
31, 2mpan2 707 . . . . 5  |-  ( dom recs
( F )  e.  On  ->  Fun  { <. dom recs
( F ) ,  ( F ` recs ( F ) ) >. } )
4 tfrlem.1 . . . . . 6  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
54tfrlem7 7479 . . . . 5  |-  Fun recs ( F )
63, 5jctil 560 . . . 4  |-  ( dom recs
( F )  e.  On  ->  ( Fun recs ( F )  /\  Fun  {
<. dom recs ( F ) ,  ( F ` recs ( F ) ) >. } ) )
71dmsnop 5609 . . . . . 6  |-  dom  { <. dom recs ( F ) ,  ( F ` recs ( F ) ) >. }  =  { dom recs ( F ) }
87ineq2i 3811 . . . . 5  |-  ( dom recs
( F )  i^i 
dom  { <. dom recs ( F
) ,  ( F `
recs ( F ) ) >. } )  =  ( dom recs ( F
)  i^i  { dom recs ( F ) } )
94tfrlem8 7480 . . . . . 6  |-  Ord  dom recs ( F )
10 orddisj 5762 . . . . . 6  |-  ( Ord 
dom recs ( F )  -> 
( dom recs ( F
)  i^i  { dom recs ( F ) } )  =  (/) )
119, 10ax-mp 5 . . . . 5  |-  ( dom recs
( F )  i^i 
{ dom recs ( F
) } )  =  (/)
128, 11eqtri 2644 . . . 4  |-  ( dom recs
( F )  i^i 
dom  { <. dom recs ( F
) ,  ( F `
recs ( F ) ) >. } )  =  (/)
13 funun 5932 . . . 4  |-  ( ( ( Fun recs ( F
)  /\  Fun  { <. dom recs
( F ) ,  ( F ` recs ( F ) ) >. } )  /\  ( dom recs ( F )  i^i 
dom  { <. dom recs ( F
) ,  ( F `
recs ( F ) ) >. } )  =  (/) )  ->  Fun  (recs ( F )  u.  { <. dom recs ( F ) ,  ( F ` recs ( F ) ) >. } ) )
146, 12, 13sylancl 694 . . 3  |-  ( dom recs
( F )  e.  On  ->  Fun  (recs ( F )  u.  { <. dom recs ( F ) ,  ( F ` recs ( F ) ) >. } ) )
157uneq2i 3764 . . . 4  |-  ( dom recs
( F )  u. 
dom  { <. dom recs ( F
) ,  ( F `
recs ( F ) ) >. } )  =  ( dom recs ( F
)  u.  { dom recs ( F ) } )
16 dmun 5331 . . . 4  |-  dom  (recs ( F )  u.  { <. dom recs ( F ) ,  ( F ` recs ( F ) ) >. } )  =  ( dom recs ( F )  u.  dom  { <. dom recs
( F ) ,  ( F ` recs ( F ) ) >. } )
17 df-suc 5729 . . . 4  |-  suc  dom recs ( F )  =  ( dom recs ( F )  u.  { dom recs ( F ) } )
1815, 16, 173eqtr4i 2654 . . 3  |-  dom  (recs ( F )  u.  { <. dom recs ( F ) ,  ( F ` recs ( F ) ) >. } )  =  suc  dom recs
( F )
19 df-fn 5891 . . 3  |-  ( (recs ( F )  u. 
{ <. dom recs ( F
) ,  ( F `
recs ( F ) ) >. } )  Fn 
suc  dom recs ( F )  <-> 
( Fun  (recs ( F )  u.  { <. dom recs ( F ) ,  ( F ` recs ( F ) ) >. } )  /\  dom  (recs ( F )  u. 
{ <. dom recs ( F
) ,  ( F `
recs ( F ) ) >. } )  =  suc  dom recs ( F
) ) )
2014, 18, 19sylanblrc 697 . 2  |-  ( dom recs
( F )  e.  On  ->  (recs ( F )  u.  { <. dom recs ( F ) ,  ( F ` recs ( F ) ) >. } )  Fn  suc  dom recs
( F ) )
21 tfrlem.3 . . 3  |-  C  =  (recs ( F )  u.  { <. dom recs ( F ) ,  ( F ` recs ( F
) ) >. } )
2221fneq1i 5985 . 2  |-  ( C  Fn  suc  dom recs ( F )  <->  (recs ( F )  u.  { <. dom recs ( F ) ,  ( F ` recs ( F ) ) >. } )  Fn  suc  dom recs
( F ) )
2320, 22sylibr 224 1  |-  ( dom recs
( F )  e.  On  ->  C  Fn  suc  dom recs ( F ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608   A.wral 2912   E.wrex 2913   _Vcvv 3200    u. cun 3572    i^i cin 3573   (/)c0 3915   {csn 4177   <.cop 4183   dom cdm 5114    |` cres 5116   Ord word 5722   Oncon0 5723   suc csuc 5725   Fun wfun 5882    Fn wfn 5883   ` cfv 5888  recscrecs 7467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896  df-wrecs 7407  df-recs 7468
This theorem is referenced by:  tfrlem11  7484  tfrlem12  7485  tfrlem13  7486
  Copyright terms: Public domain W3C validator