| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylanr2 | Structured version Visualization version Unicode version | ||
| Description: A syllogism inference. (Contributed by NM, 9-Apr-2005.) |
| Ref | Expression |
|---|---|
| sylanr2.1 |
|
| sylanr2.2 |
|
| Ref | Expression |
|---|---|
| sylanr2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylanr2.1 |
. . 3
| |
| 2 | 1 | anim2i 593 |
. 2
|
| 3 | sylanr2.2 |
. 2
| |
| 4 | 2, 3 | sylan2 491 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-an 386 |
| This theorem is referenced by: adantrrl 760 adantrrr 761 1stconst 7265 2ndconst 7266 isfin7-2 9218 mulsub 10473 fzsubel 12377 expsub 12908 ramlb 15723 0ram 15724 ressmplvsca 19459 tgcl 20773 fgss2 21678 nmoid 22546 chirredlem4 29252 poimirlem28 33437 pridlc3 33872 stoweidlem34 40251 |
| Copyright terms: Public domain | W3C validator |