HomeHome Metamath Proof Explorer
Theorem List (p. 205 of 426)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-27775)
  Hilbert Space Explorer  Hilbert Space Explorer
(27776-29300)
  Users' Mathboxes  Users' Mathboxes
(29301-42551)
 

Theorem List for Metamath Proof Explorer - 20401-20500   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremmdetf 20401 Functionality of the determinant, see also definition in [Lang] p. 513. (Contributed by Stefan O'Rear, 9-Jul-2018.) (Proof shortened by AV, 23-Jul-2019.)
 |-  D  =  ( N maDet  R )   &    |-  A  =  ( N Mat  R )   &    |-  B  =  ( Base `  A )   &    |-  K  =  ( Base `  R )   =>    |-  ( R  e.  CRing  ->  D : B --> K )
 
Theoremmdetcl 20402 The determinant evaluates to an element of the base ring. (Contributed by Stefan O'Rear, 9-Sep-2015.) (Revised by AV, 7-Feb-2019.)
 |-  D  =  ( N maDet  R )   &    |-  A  =  ( N Mat  R )   &    |-  B  =  ( Base `  A )   &    |-  K  =  ( Base `  R )   =>    |-  (
 ( R  e.  CRing  /\  M  e.  B ) 
 ->  ( D `  M )  e.  K )
 
Theoremm1detdiag 20403 The determinant of a 1-dimensional matrix equals its (single) entry. (Contributed by AV, 6-Aug-2019.)
 |-  D  =  ( N maDet  R )   &    |-  A  =  ( N Mat  R )   &    |-  B  =  ( Base `  A )   =>    |-  (
 ( R  e.  CRing  /\  ( N  =  { I }  /\  I  e.  V )  /\  M  e.  B )  ->  ( D `  M )  =  ( I M I ) )
 
Theoremmdetdiaglem 20404* Lemma for mdetdiag 20405. Previously part of proof for mdet1 20407. (Contributed by SO, 10-Jul-2018.) (Revised by AV, 17-Aug-2019.)
 |-  D  =  ( N maDet  R )   &    |-  A  =  ( N Mat  R )   &    |-  B  =  ( Base `  A )   &    |-  G  =  (mulGrp `  R )   &    |-  .0.  =  ( 0g `  R )   &    |-  H  =  ( Base `  ( SymGrp `  N )
 )   &    |-  Z  =  ( ZRHom `  R )   &    |-  S  =  (pmSgn `  N )   &    |-  .x.  =  ( .r `  R )   =>    |-  ( ( ( R  e.  CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  )  /\  ( P  e.  H  /\  P  =/=  (  _I  |`  N ) ) )  ->  (
 ( ( Z  o.  S ) `  P )  .x.  ( G  gsumg  ( k  e.  N  |->  ( ( P `  k ) M k ) ) ) )  =  .0.  )
 
Theoremmdetdiag 20405* The determinant of a diagonal matrix is the product of the entries in the diagonal. (Contributed by AV, 17-Aug-2019.)
 |-  D  =  ( N maDet  R )   &    |-  A  =  ( N Mat  R )   &    |-  B  =  ( Base `  A )   &    |-  G  =  (mulGrp `  R )   &    |-  .0.  =  ( 0g `  R )   =>    |-  ( ( R  e.  CRing  /\  N  e.  Fin  /\  M  e.  B )  ->  ( A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  )  ->  ( D `  M )  =  ( G  gsumg  ( k  e.  N  |->  ( k M k ) ) ) ) )
 
Theoremmdetdiagid 20406* The determinant of a diagonal matrix with identical entries is the power of the entry in the diagonal. (Contributed by AV, 17-Aug-2019.)
 |-  D  =  ( N maDet  R )   &    |-  A  =  ( N Mat  R )   &    |-  B  =  ( Base `  A )   &    |-  G  =  (mulGrp `  R )   &    |-  .0.  =  ( 0g `  R )   &    |-  C  =  ( Base `  R )   &    |-  .x.  =  (.g `  G )   =>    |-  ( ( ( R  e.  CRing  /\  N  e.  Fin )  /\  ( M  e.  B  /\  X  e.  C ) )  ->  ( A. i  e.  N  A. j  e.  N  ( i M j )  =  if ( i  =  j ,  X ,  .0.  )  ->  ( D `  M )  =  ( ( # `  N )  .x.  X ) ) )
 
Theoremmdet1 20407 The determinant of the identity matrix is 1, i.e. the determinant function is normalized, see also definition in [Lang] p. 513. (Contributed by SO, 10-Jul-2018.) (Proof shortened by AV, 25-Nov-2019.)
 |-  D  =  ( N maDet  R )   &    |-  A  =  ( N Mat  R )   &    |-  I  =  ( 1r `  A )   &    |- 
 .1.  =  ( 1r `  R )   =>    |-  ( ( R  e.  CRing  /\  N  e.  Fin )  ->  ( D `  I
 )  =  .1.  )
 
Theoremmdetrlin 20408 The determinant function is additive for each row: The matrices X, Y, Z are identical except for the I's row, and the I's row of the matrix X is the componentwise sum of the I's row of the matrices Y and Z. In this case the determinant of X is the sum of the determinants of Y and Z. (Contributed by SO, 9-Jul-2018.) (Proof shortened by AV, 23-Jul-2019.)
 |-  D  =  ( N maDet  R )   &    |-  A  =  ( N Mat  R )   &    |-  B  =  ( Base `  A )   &    |-  .+  =  ( +g  `  R )   &    |-  ( ph  ->  R  e.  CRing )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   &    |-  ( ph  ->  Z  e.  B )   &    |-  ( ph  ->  I  e.  N )   &    |-  ( ph  ->  ( X  |`  ( { I }  X.  N ) )  =  ( ( Y  |`  ( { I }  X.  N ) )  oF  .+  ( Z  |`  ( { I }  X.  N ) ) ) )   &    |-  ( ph  ->  ( X  |`  ( ( N  \  { I } )  X.  N ) )  =  ( Y  |`  ( ( N  \  { I } )  X.  N ) ) )   &    |-  ( ph  ->  ( X  |`  ( ( N  \  { I } )  X.  N ) )  =  ( Z  |`  ( ( N  \  { I } )  X.  N ) ) )   =>    |-  ( ph  ->  ( D `  X )  =  ( ( D `  Y )  .+  ( D `
  Z ) ) )
 
Theoremmdetrsca 20409 The determinant function is homogeneous for each row: The matrices X and Z are identical except for the I's row, and the I's row of the matrix X is the componentwise product of the I's row of the matrix Z and the scalar Y. In this case the determinant of X is the determinant of Z multiplied by Y. (Contributed by SO, 9-Jul-2018.) (Proof shortened by AV, 23-Jul-2019.)
 |-  D  =  ( N maDet  R )   &    |-  A  =  ( N Mat  R )   &    |-  B  =  ( Base `  A )   &    |-  K  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  ( ph  ->  R  e.  CRing
 )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  K )   &    |-  ( ph  ->  Z  e.  B )   &    |-  ( ph  ->  I  e.  N )   &    |-  ( ph  ->  ( X  |`  ( { I }  X.  N ) )  =  ( ( ( { I }  X.  N )  X.  { Y } )  oF  .x.  ( Z  |`  ( { I }  X.  N ) ) ) )   &    |-  ( ph  ->  ( X  |`  ( ( N  \  { I } )  X.  N ) )  =  ( Z  |`  ( ( N  \  { I } )  X.  N ) ) )   =>    |-  ( ph  ->  ( D `  X )  =  ( Y  .x.  ( D `  Z ) ) )
 
Theoremmdetrsca2 20410* The determinant function is homogeneous for each row (matrices are given explicitly by their entries). (Contributed by SO, 16-Jul-2018.)
 |-  D  =  ( N maDet  R )   &    |-  K  =  (
 Base `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  ( ph  ->  R  e.  CRing
 )   &    |-  ( ph  ->  N  e.  Fin )   &    |-  ( ( ph  /\  i  e.  N  /\  j  e.  N )  ->  X  e.  K )   &    |-  ( ( ph  /\  i  e.  N  /\  j  e.  N )  ->  Y  e.  K )   &    |-  ( ph  ->  F  e.  K )   &    |-  ( ph  ->  I  e.  N )   =>    |-  ( ph  ->  ( D `  ( i  e.  N ,  j  e.  N  |->  if ( i  =  I ,  ( F 
 .x.  X ) ,  Y ) ) )  =  ( F  .x.  ( D `  ( i  e.  N ,  j  e.  N  |->  if ( i  =  I ,  X ,  Y ) ) ) ) )
 
Theoremmdetr0 20411* The determinant of a matrix with a row containing only 0's is 0. (Contributed by SO, 16-Jul-2018.)
 |-  D  =  ( N maDet  R )   &    |-  K  =  (
 Base `  R )   &    |-  .0.  =  ( 0g `  R )   &    |-  ( ph  ->  R  e.  CRing )   &    |-  ( ph  ->  N  e.  Fin )   &    |-  (
 ( ph  /\  i  e.  N  /\  j  e.  N )  ->  X  e.  K )   &    |-  ( ph  ->  I  e.  N )   =>    |-  ( ph  ->  ( D `  ( i  e.  N ,  j  e.  N  |->  if ( i  =  I ,  .0.  ,  X ) ) )  =  .0.  )
 
Theoremmdet0 20412 The determinant of the zero matrix (of dimension greater 0!) is 0. (Contributed by AV, 17-Aug-2019.)
 |-  D  =  ( N maDet  R )   &    |-  A  =  ( N Mat  R )   &    |-  B  =  ( Base `  A )   &    |-  Z  =  ( 0g `  A )   &    |- 
 .0.  =  ( 0g `  R )   =>    |-  ( ( R  e.  CRing  /\  N  e.  Fin  /\  N  =/=  (/) )  ->  ( D `  Z )  =  .0.  )
 
Theoremmdetrlin2 20413* The determinant function is additive for each row (matrices are given explicitly by their entries). (Contributed by SO, 16-Jul-2018.)
 |-  D  =  ( N maDet  R )   &    |-  K  =  (
 Base `  R )   &    |-  .+  =  ( +g  `  R )   &    |-  ( ph  ->  R  e.  CRing )   &    |-  ( ph  ->  N  e.  Fin )   &    |-  ( ( ph  /\  i  e.  N  /\  j  e.  N )  ->  X  e.  K )   &    |-  ( ( ph  /\  i  e.  N  /\  j  e.  N )  ->  Y  e.  K )   &    |-  ( ( ph  /\  i  e.  N  /\  j  e.  N )  ->  Z  e.  K )   &    |-  ( ph  ->  I  e.  N )   =>    |-  ( ph  ->  ( D `  ( i  e.  N ,  j  e.  N  |->  if ( i  =  I ,  ( X 
 .+  Y ) ,  Z ) ) )  =  ( ( D `
  ( i  e.  N ,  j  e.  N  |->  if ( i  =  I ,  X ,  Z ) ) ) 
 .+  ( D `  ( i  e.  N ,  j  e.  N  |->  if ( i  =  I ,  Y ,  Z ) ) ) ) )
 
Theoremmdetralt 20414* The determinant function is alternating regarding rows: if a matrix has two identical rows, its determinant is 0. Corollary 4.9 in [Lang] p. 515. (Contributed by SO, 10-Jul-2018.) (Proof shortened by AV, 23-Jul-2018.)
 |-  D  =  ( N maDet  R )   &    |-  A  =  ( N Mat  R )   &    |-  B  =  ( Base `  A )   &    |-  .0.  =  ( 0g `  R )   &    |-  ( ph  ->  R  e.  CRing )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  I  e.  N )   &    |-  ( ph  ->  J  e.  N )   &    |-  ( ph  ->  I  =/=  J )   &    |-  ( ph  ->  A. a  e.  N  ( I X a )  =  ( J X a ) )   =>    |-  ( ph  ->  ( D `  X )  =  .0.  )
 
Theoremmdetralt2 20415* The determinant function is alternating regarding rows (matrix is given explicitly by its entries). (Contributed by SO, 16-Jul-2018.)
 |-  D  =  ( N maDet  R )   &    |-  K  =  (
 Base `  R )   &    |-  .0.  =  ( 0g `  R )   &    |-  ( ph  ->  R  e.  CRing )   &    |-  ( ph  ->  N  e.  Fin )   &    |-  (
 ( ph  /\  j  e.  N )  ->  X  e.  K )   &    |-  ( ( ph  /\  i  e.  N  /\  j  e.  N )  ->  Y  e.  K )   &    |-  ( ph  ->  I  e.  N )   &    |-  ( ph  ->  J  e.  N )   &    |-  ( ph  ->  I  =/=  J )   =>    |-  ( ph  ->  ( D `  ( i  e.  N ,  j  e.  N  |->  if ( i  =  I ,  X ,  if ( i  =  J ,  X ,  Y ) ) ) )  =  .0.  )
 
Theoremmdetero 20416* The determinant function is multilinear (additive and homogeneous for each row (matrices are given explicitly by their entries). Corollary 4.9 in [Lang] p. 515. (Contributed by SO, 16-Jul-2018.)
 |-  D  =  ( N maDet  R )   &    |-  K  =  (
 Base `  R )   &    |-  .+  =  ( +g  `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  ( ph  ->  R  e.  CRing
 )   &    |-  ( ph  ->  N  e.  Fin )   &    |-  ( ( ph  /\  j  e.  N ) 
 ->  X  e.  K )   &    |-  ( ( ph  /\  j  e.  N )  ->  Y  e.  K )   &    |-  ( ( ph  /\  i  e.  N  /\  j  e.  N )  ->  Z  e.  K )   &    |-  ( ph  ->  W  e.  K )   &    |-  ( ph  ->  I  e.  N )   &    |-  ( ph  ->  J  e.  N )   &    |-  ( ph  ->  I  =/=  J )   =>    |-  ( ph  ->  ( D `  ( i  e.  N ,  j  e.  N  |->  if ( i  =  I ,  ( X 
 .+  ( W  .x.  Y ) ) ,  if ( i  =  J ,  Y ,  Z ) ) ) )  =  ( D `  (
 i  e.  N ,  j  e.  N  |->  if (
 i  =  I ,  X ,  if (
 i  =  J ,  Y ,  Z )
 ) ) ) )
 
Theoremmdettpos 20417 Determinant is invariant under transposition. Proposition 4.8 in [Lang] p. 514. (Contributed by Stefan O'Rear, 9-Jul-2018.)
 |-  D  =  ( N maDet  R )   &    |-  A  =  ( N Mat  R )   &    |-  B  =  ( Base `  A )   =>    |-  (
 ( R  e.  CRing  /\  M  e.  B ) 
 ->  ( D ` tpos  M )  =  ( D `  M ) )
 
Theoremmdetunilem1 20418* Lemma for mdetuni 20428. (Contributed by SO, 14-Jul-2018.)
 |-  A  =  ( N Mat 
 R )   &    |-  B  =  (
 Base `  A )   &    |-  K  =  ( Base `  R )   &    |-  .0.  =  ( 0g `  R )   &    |- 
 .1.  =  ( 1r `  R )   &    |-  .+  =  ( +g  `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  ( ph  ->  N  e.  Fin )   &    |-  ( ph  ->  R  e.  Ring )   &    |-  ( ph  ->  D : B --> K )   &    |-  ( ph  ->  A. x  e.  B  A. y  e.  N  A. z  e.  N  ( ( y  =/=  z  /\  A. w  e.  N  (
 y x w )  =  ( z x w ) )  ->  ( D `  x )  =  .0.  ) )   &    |-  ( ph  ->  A. x  e.  B  A. y  e.  B  A. z  e.  B  A. w  e.  N  ( ( ( x  |`  ( { w }  X.  N ) )  =  ( ( y  |`  ( { w }  X.  N ) )  oF  .+  ( z  |`  ( { w }  X.  N ) ) )  /\  ( x  |`  ( ( N 
 \  { w }
 )  X.  N )
 )  =  ( y  |`  ( ( N  \  { w } )  X.  N ) )  /\  ( x  |`  ( ( N  \  { w } )  X.  N ) )  =  ( z  |`  ( ( N  \  { w } )  X.  N ) ) ) 
 ->  ( D `  x )  =  ( ( D `  y )  .+  ( D `  z ) ) ) )   &    |-  ( ph  ->  A. x  e.  B  A. y  e.  K  A. z  e.  B  A. w  e.  N  ( ( ( x  |`  ( { w }  X.  N ) )  =  ( ( ( { w }  X.  N )  X.  {
 y } )  oF  .x.  ( z  |`  ( { w }  X.  N ) ) ) 
 /\  ( x  |`  ( ( N  \  { w } )  X.  N ) )  =  ( z  |`  ( ( N  \  { w } )  X.  N ) ) )  ->  ( D `  x )  =  ( y  .x.  ( D `  z ) ) ) )   =>    |-  ( ( ( ph  /\  E  e.  B  /\  A. w  e.  N  ( F E w )  =  ( G E w ) )  /\  ( F  e.  N  /\  G  e.  N  /\  F  =/=  G ) ) 
 ->  ( D `  E )  =  .0.  )
 
Theoremmdetunilem2 20419* Lemma for mdetuni 20428. (Contributed by SO, 15-Jul-2018.)
 |-  A  =  ( N Mat 
 R )   &    |-  B  =  (
 Base `  A )   &    |-  K  =  ( Base `  R )   &    |-  .0.  =  ( 0g `  R )   &    |- 
 .1.  =  ( 1r `  R )   &    |-  .+  =  ( +g  `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  ( ph  ->  N  e.  Fin )   &    |-  ( ph  ->  R  e.  Ring )   &    |-  ( ph  ->  D : B --> K )   &    |-  ( ph  ->  A. x  e.  B  A. y  e.  N  A. z  e.  N  ( ( y  =/=  z  /\  A. w  e.  N  (
 y x w )  =  ( z x w ) )  ->  ( D `  x )  =  .0.  ) )   &    |-  ( ph  ->  A. x  e.  B  A. y  e.  B  A. z  e.  B  A. w  e.  N  ( ( ( x  |`  ( { w }  X.  N ) )  =  ( ( y  |`  ( { w }  X.  N ) )  oF  .+  ( z  |`  ( { w }  X.  N ) ) )  /\  ( x  |`  ( ( N 
 \  { w }
 )  X.  N )
 )  =  ( y  |`  ( ( N  \  { w } )  X.  N ) )  /\  ( x  |`  ( ( N  \  { w } )  X.  N ) )  =  ( z  |`  ( ( N  \  { w } )  X.  N ) ) ) 
 ->  ( D `  x )  =  ( ( D `  y )  .+  ( D `  z ) ) ) )   &    |-  ( ph  ->  A. x  e.  B  A. y  e.  K  A. z  e.  B  A. w  e.  N  ( ( ( x  |`  ( { w }  X.  N ) )  =  ( ( ( { w }  X.  N )  X.  {
 y } )  oF  .x.  ( z  |`  ( { w }  X.  N ) ) ) 
 /\  ( x  |`  ( ( N  \  { w } )  X.  N ) )  =  ( z  |`  ( ( N  \  { w } )  X.  N ) ) )  ->  ( D `  x )  =  ( y  .x.  ( D `  z ) ) ) )   &    |-  ( ps  ->  ph )   &    |-  ( ps  ->  ( E  e.  N  /\  G  e.  N  /\  E  =/=  G ) )   &    |-  ( ( ps  /\  b  e.  N )  ->  F  e.  K )   &    |-  ( ( ps  /\  a  e.  N  /\  b  e.  N )  ->  H  e.  K )   =>    |-  ( ps  ->  ( D `  ( a  e.  N ,  b  e.  N  |->  if ( a  =  E ,  F ,  if (
 a  =  G ,  F ,  H )
 ) ) )  =  .0.  )
 
Theoremmdetunilem3 20420* Lemma for mdetuni 20428. (Contributed by SO, 15-Jul-2018.)
 |-  A  =  ( N Mat 
 R )   &    |-  B  =  (
 Base `  A )   &    |-  K  =  ( Base `  R )   &    |-  .0.  =  ( 0g `  R )   &    |- 
 .1.  =  ( 1r `  R )   &    |-  .+  =  ( +g  `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  ( ph  ->  N  e.  Fin )   &    |-  ( ph  ->  R  e.  Ring )   &    |-  ( ph  ->  D : B --> K )   &    |-  ( ph  ->  A. x  e.  B  A. y  e.  N  A. z  e.  N  ( ( y  =/=  z  /\  A. w  e.  N  (
 y x w )  =  ( z x w ) )  ->  ( D `  x )  =  .0.  ) )   &    |-  ( ph  ->  A. x  e.  B  A. y  e.  B  A. z  e.  B  A. w  e.  N  ( ( ( x  |`  ( { w }  X.  N ) )  =  ( ( y  |`  ( { w }  X.  N ) )  oF  .+  ( z  |`  ( { w }  X.  N ) ) )  /\  ( x  |`  ( ( N 
 \  { w }
 )  X.  N )
 )  =  ( y  |`  ( ( N  \  { w } )  X.  N ) )  /\  ( x  |`  ( ( N  \  { w } )  X.  N ) )  =  ( z  |`  ( ( N  \  { w } )  X.  N ) ) ) 
 ->  ( D `  x )  =  ( ( D `  y )  .+  ( D `  z ) ) ) )   &    |-  ( ph  ->  A. x  e.  B  A. y  e.  K  A. z  e.  B  A. w  e.  N  ( ( ( x  |`  ( { w }  X.  N ) )  =  ( ( ( { w }  X.  N )  X.  {
 y } )  oF  .x.  ( z  |`  ( { w }  X.  N ) ) ) 
 /\  ( x  |`  ( ( N  \  { w } )  X.  N ) )  =  ( z  |`  ( ( N  \  { w } )  X.  N ) ) )  ->  ( D `  x )  =  ( y  .x.  ( D `  z ) ) ) )   =>    |-  ( ( ( ph  /\  E  e.  B  /\  F  e.  B )  /\  ( G  e.  B  /\  H  e.  N  /\  ( E  |`  ( { H }  X.  N ) )  =  ( ( F  |`  ( { H }  X.  N ) )  oF  .+  ( G  |`  ( { H }  X.  N ) ) ) )  /\  ( ( E  |`  ( ( N  \  { H } )  X.  N ) )  =  ( F  |`  ( ( N  \  { H } )  X.  N ) )  /\  ( E  |`  ( ( N  \  { H } )  X.  N ) )  =  ( G  |`  ( ( N  \  { H } )  X.  N ) ) ) )  ->  ( D `  E )  =  ( ( D `  F )  .+  ( D `  G ) ) )
 
Theoremmdetunilem4 20421* Lemma for mdetuni 20428. (Contributed by SO, 15-Jul-2018.)
 |-  A  =  ( N Mat 
 R )   &    |-  B  =  (
 Base `  A )   &    |-  K  =  ( Base `  R )   &    |-  .0.  =  ( 0g `  R )   &    |- 
 .1.  =  ( 1r `  R )   &    |-  .+  =  ( +g  `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  ( ph  ->  N  e.  Fin )   &    |-  ( ph  ->  R  e.  Ring )   &    |-  ( ph  ->  D : B --> K )   &    |-  ( ph  ->  A. x  e.  B  A. y  e.  N  A. z  e.  N  ( ( y  =/=  z  /\  A. w  e.  N  (
 y x w )  =  ( z x w ) )  ->  ( D `  x )  =  .0.  ) )   &    |-  ( ph  ->  A. x  e.  B  A. y  e.  B  A. z  e.  B  A. w  e.  N  ( ( ( x  |`  ( { w }  X.  N ) )  =  ( ( y  |`  ( { w }  X.  N ) )  oF  .+  ( z  |`  ( { w }  X.  N ) ) )  /\  ( x  |`  ( ( N 
 \  { w }
 )  X.  N )
 )  =  ( y  |`  ( ( N  \  { w } )  X.  N ) )  /\  ( x  |`  ( ( N  \  { w } )  X.  N ) )  =  ( z  |`  ( ( N  \  { w } )  X.  N ) ) ) 
 ->  ( D `  x )  =  ( ( D `  y )  .+  ( D `  z ) ) ) )   &    |-  ( ph  ->  A. x  e.  B  A. y  e.  K  A. z  e.  B  A. w  e.  N  ( ( ( x  |`  ( { w }  X.  N ) )  =  ( ( ( { w }  X.  N )  X.  {
 y } )  oF  .x.  ( z  |`  ( { w }  X.  N ) ) ) 
 /\  ( x  |`  ( ( N  \  { w } )  X.  N ) )  =  ( z  |`  ( ( N  \  { w } )  X.  N ) ) )  ->  ( D `  x )  =  ( y  .x.  ( D `  z ) ) ) )   =>    |-  ( ( ph  /\  ( E  e.  B  /\  F  e.  K  /\  G  e.  B )  /\  ( H  e.  N  /\  ( E  |`  ( { H }  X.  N ) )  =  ( ( ( { H }  X.  N )  X.  { F } )  oF  .x.  ( G  |`  ( { H }  X.  N ) ) )  /\  ( E  |`  ( ( N 
 \  { H }
 )  X.  N )
 )  =  ( G  |`  ( ( N  \  { H } )  X.  N ) ) ) )  ->  ( D `  E )  =  ( F  .x.  ( D `  G ) ) )
 
Theoremmdetunilem5 20422* Lemma for mdetuni 20428. (Contributed by SO, 15-Jul-2018.)
 |-  A  =  ( N Mat 
 R )   &    |-  B  =  (
 Base `  A )   &    |-  K  =  ( Base `  R )   &    |-  .0.  =  ( 0g `  R )   &    |- 
 .1.  =  ( 1r `  R )   &    |-  .+  =  ( +g  `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  ( ph  ->  N  e.  Fin )   &    |-  ( ph  ->  R  e.  Ring )   &    |-  ( ph  ->  D : B --> K )   &    |-  ( ph  ->  A. x  e.  B  A. y  e.  N  A. z  e.  N  ( ( y  =/=  z  /\  A. w  e.  N  (
 y x w )  =  ( z x w ) )  ->  ( D `  x )  =  .0.  ) )   &    |-  ( ph  ->  A. x  e.  B  A. y  e.  B  A. z  e.  B  A. w  e.  N  ( ( ( x  |`  ( { w }  X.  N ) )  =  ( ( y  |`  ( { w }  X.  N ) )  oF  .+  ( z  |`  ( { w }  X.  N ) ) )  /\  ( x  |`  ( ( N 
 \  { w }
 )  X.  N )
 )  =  ( y  |`  ( ( N  \  { w } )  X.  N ) )  /\  ( x  |`  ( ( N  \  { w } )  X.  N ) )  =  ( z  |`  ( ( N  \  { w } )  X.  N ) ) ) 
 ->  ( D `  x )  =  ( ( D `  y )  .+  ( D `  z ) ) ) )   &    |-  ( ph  ->  A. x  e.  B  A. y  e.  K  A. z  e.  B  A. w  e.  N  ( ( ( x  |`  ( { w }  X.  N ) )  =  ( ( ( { w }  X.  N )  X.  {
 y } )  oF  .x.  ( z  |`  ( { w }  X.  N ) ) ) 
 /\  ( x  |`  ( ( N  \  { w } )  X.  N ) )  =  ( z  |`  ( ( N  \  { w } )  X.  N ) ) )  ->  ( D `  x )  =  ( y  .x.  ( D `  z ) ) ) )   &    |-  ( ps  ->  ph )   &    |-  ( ps  ->  E  e.  N )   &    |-  (
 ( ps  /\  a  e.  N  /\  b  e.  N )  ->  ( F  e.  K  /\  G  e.  K  /\  H  e.  K )
 )   =>    |-  ( ps  ->  ( D `  ( a  e.  N ,  b  e.  N  |->  if ( a  =  E ,  ( F 
 .+  G ) ,  H ) ) )  =  ( ( D `
  ( a  e.  N ,  b  e.  N  |->  if ( a  =  E ,  F ,  H ) ) ) 
 .+  ( D `  ( a  e.  N ,  b  e.  N  |->  if ( a  =  E ,  G ,  H ) ) ) ) )
 
Theoremmdetunilem6 20423* Lemma for mdetuni 20428. (Contributed by SO, 15-Jul-2018.)
 |-  A  =  ( N Mat 
 R )   &    |-  B  =  (
 Base `  A )   &    |-  K  =  ( Base `  R )   &    |-  .0.  =  ( 0g `  R )   &    |- 
 .1.  =  ( 1r `  R )   &    |-  .+  =  ( +g  `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  ( ph  ->  N  e.  Fin )   &    |-  ( ph  ->  R  e.  Ring )   &    |-  ( ph  ->  D : B --> K )   &    |-  ( ph  ->  A. x  e.  B  A. y  e.  N  A. z  e.  N  ( ( y  =/=  z  /\  A. w  e.  N  (
 y x w )  =  ( z x w ) )  ->  ( D `  x )  =  .0.  ) )   &    |-  ( ph  ->  A. x  e.  B  A. y  e.  B  A. z  e.  B  A. w  e.  N  ( ( ( x  |`  ( { w }  X.  N ) )  =  ( ( y  |`  ( { w }  X.  N ) )  oF  .+  ( z  |`  ( { w }  X.  N ) ) )  /\  ( x  |`  ( ( N 
 \  { w }
 )  X.  N )
 )  =  ( y  |`  ( ( N  \  { w } )  X.  N ) )  /\  ( x  |`  ( ( N  \  { w } )  X.  N ) )  =  ( z  |`  ( ( N  \  { w } )  X.  N ) ) ) 
 ->  ( D `  x )  =  ( ( D `  y )  .+  ( D `  z ) ) ) )   &    |-  ( ph  ->  A. x  e.  B  A. y  e.  K  A. z  e.  B  A. w  e.  N  ( ( ( x  |`  ( { w }  X.  N ) )  =  ( ( ( { w }  X.  N )  X.  {
 y } )  oF  .x.  ( z  |`  ( { w }  X.  N ) ) ) 
 /\  ( x  |`  ( ( N  \  { w } )  X.  N ) )  =  ( z  |`  ( ( N  \  { w } )  X.  N ) ) )  ->  ( D `  x )  =  ( y  .x.  ( D `  z ) ) ) )   &    |-  ( ps  ->  ph )   &    |-  ( ps  ->  ( E  e.  N  /\  F  e.  N  /\  E  =/=  F ) )   &    |-  ( ( ps  /\  b  e.  N )  ->  ( G  e.  K  /\  H  e.  K ) )   &    |-  ( ( ps 
 /\  a  e.  N  /\  b  e.  N )  ->  I  e.  K )   =>    |-  ( ps  ->  ( D `  ( a  e.  N ,  b  e.  N  |->  if ( a  =  E ,  G ,  if ( a  =  F ,  H ,  I ) ) ) )  =  ( ( invg `  R ) `  ( D `  ( a  e.  N ,  b  e.  N  |->  if ( a  =  E ,  H ,  if ( a  =  F ,  G ,  I ) ) ) ) ) )
 
Theoremmdetunilem7 20424* Lemma for mdetuni 20428. (Contributed by SO, 15-Jul-2018.)
 |-  A  =  ( N Mat 
 R )   &    |-  B  =  (
 Base `  A )   &    |-  K  =  ( Base `  R )   &    |-  .0.  =  ( 0g `  R )   &    |- 
 .1.  =  ( 1r `  R )   &    |-  .+  =  ( +g  `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  ( ph  ->  N  e.  Fin )   &    |-  ( ph  ->  R  e.  Ring )   &    |-  ( ph  ->  D : B --> K )   &    |-  ( ph  ->  A. x  e.  B  A. y  e.  N  A. z  e.  N  ( ( y  =/=  z  /\  A. w  e.  N  (
 y x w )  =  ( z x w ) )  ->  ( D `  x )  =  .0.  ) )   &    |-  ( ph  ->  A. x  e.  B  A. y  e.  B  A. z  e.  B  A. w  e.  N  ( ( ( x  |`  ( { w }  X.  N ) )  =  ( ( y  |`  ( { w }  X.  N ) )  oF  .+  ( z  |`  ( { w }  X.  N ) ) )  /\  ( x  |`  ( ( N 
 \  { w }
 )  X.  N )
 )  =  ( y  |`  ( ( N  \  { w } )  X.  N ) )  /\  ( x  |`  ( ( N  \  { w } )  X.  N ) )  =  ( z  |`  ( ( N  \  { w } )  X.  N ) ) ) 
 ->  ( D `  x )  =  ( ( D `  y )  .+  ( D `  z ) ) ) )   &    |-  ( ph  ->  A. x  e.  B  A. y  e.  K  A. z  e.  B  A. w  e.  N  ( ( ( x  |`  ( { w }  X.  N ) )  =  ( ( ( { w }  X.  N )  X.  {
 y } )  oF  .x.  ( z  |`  ( { w }  X.  N ) ) ) 
 /\  ( x  |`  ( ( N  \  { w } )  X.  N ) )  =  ( z  |`  ( ( N  \  { w } )  X.  N ) ) )  ->  ( D `  x )  =  ( y  .x.  ( D `  z ) ) ) )   =>    |-  ( ( ph  /\  E : N -1-1-onto-> N  /\  F  e.  B )  ->  ( D `
  ( a  e.  N ,  b  e.  N  |->  ( ( E `
  a ) F b ) ) )  =  ( ( ( ( ZRHom `  R )  o.  (pmSgn `  N ) ) `  E )  .x.  ( D `  F ) ) )
 
Theoremmdetunilem8 20425* Lemma for mdetuni 20428. (Contributed by SO, 15-Jul-2018.)
 |-  A  =  ( N Mat 
 R )   &    |-  B  =  (
 Base `  A )   &    |-  K  =  ( Base `  R )   &    |-  .0.  =  ( 0g `  R )   &    |- 
 .1.  =  ( 1r `  R )   &    |-  .+  =  ( +g  `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  ( ph  ->  N  e.  Fin )   &    |-  ( ph  ->  R  e.  Ring )   &    |-  ( ph  ->  D : B --> K )   &    |-  ( ph  ->  A. x  e.  B  A. y  e.  N  A. z  e.  N  ( ( y  =/=  z  /\  A. w  e.  N  (
 y x w )  =  ( z x w ) )  ->  ( D `  x )  =  .0.  ) )   &    |-  ( ph  ->  A. x  e.  B  A. y  e.  B  A. z  e.  B  A. w  e.  N  ( ( ( x  |`  ( { w }  X.  N ) )  =  ( ( y  |`  ( { w }  X.  N ) )  oF  .+  ( z  |`  ( { w }  X.  N ) ) )  /\  ( x  |`  ( ( N 
 \  { w }
 )  X.  N )
 )  =  ( y  |`  ( ( N  \  { w } )  X.  N ) )  /\  ( x  |`  ( ( N  \  { w } )  X.  N ) )  =  ( z  |`  ( ( N  \  { w } )  X.  N ) ) ) 
 ->  ( D `  x )  =  ( ( D `  y )  .+  ( D `  z ) ) ) )   &    |-  ( ph  ->  A. x  e.  B  A. y  e.  K  A. z  e.  B  A. w  e.  N  ( ( ( x  |`  ( { w }  X.  N ) )  =  ( ( ( { w }  X.  N )  X.  {
 y } )  oF  .x.  ( z  |`  ( { w }  X.  N ) ) ) 
 /\  ( x  |`  ( ( N  \  { w } )  X.  N ) )  =  ( z  |`  ( ( N  \  { w } )  X.  N ) ) )  ->  ( D `  x )  =  ( y  .x.  ( D `  z ) ) ) )   &    |-  ( ph  ->  ( D `  ( 1r
 `  A ) )  =  .0.  )   =>    |-  ( ( ph  /\  E : N --> N ) 
 ->  ( D `  (
 a  e.  N ,  b  e.  N  |->  if (
 ( E `  a
 )  =  b ,  .1.  ,  .0.  )
 ) )  =  .0.  )
 
Theoremmdetunilem9 20426* Lemma for mdetuni 20428. (Contributed by SO, 15-Jul-2018.)
 |-  A  =  ( N Mat 
 R )   &    |-  B  =  (
 Base `  A )   &    |-  K  =  ( Base `  R )   &    |-  .0.  =  ( 0g `  R )   &    |- 
 .1.  =  ( 1r `  R )   &    |-  .+  =  ( +g  `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  ( ph  ->  N  e.  Fin )   &    |-  ( ph  ->  R  e.  Ring )   &    |-  ( ph  ->  D : B --> K )   &    |-  ( ph  ->  A. x  e.  B  A. y  e.  N  A. z  e.  N  ( ( y  =/=  z  /\  A. w  e.  N  (
 y x w )  =  ( z x w ) )  ->  ( D `  x )  =  .0.  ) )   &    |-  ( ph  ->  A. x  e.  B  A. y  e.  B  A. z  e.  B  A. w  e.  N  ( ( ( x  |`  ( { w }  X.  N ) )  =  ( ( y  |`  ( { w }  X.  N ) )  oF  .+  ( z  |`  ( { w }  X.  N ) ) )  /\  ( x  |`  ( ( N 
 \  { w }
 )  X.  N )
 )  =  ( y  |`  ( ( N  \  { w } )  X.  N ) )  /\  ( x  |`  ( ( N  \  { w } )  X.  N ) )  =  ( z  |`  ( ( N  \  { w } )  X.  N ) ) ) 
 ->  ( D `  x )  =  ( ( D `  y )  .+  ( D `  z ) ) ) )   &    |-  ( ph  ->  A. x  e.  B  A. y  e.  K  A. z  e.  B  A. w  e.  N  ( ( ( x  |`  ( { w }  X.  N ) )  =  ( ( ( { w }  X.  N )  X.  {
 y } )  oF  .x.  ( z  |`  ( { w }  X.  N ) ) ) 
 /\  ( x  |`  ( ( N  \  { w } )  X.  N ) )  =  ( z  |`  ( ( N  \  { w } )  X.  N ) ) )  ->  ( D `  x )  =  ( y  .x.  ( D `  z ) ) ) )   &    |-  ( ph  ->  ( D `  ( 1r
 `  A ) )  =  .0.  )   &    |-  Y  =  { x  |  A. y  e.  B  A. z  e.  ( N  ^m  N ) ( A. w  e.  x  ( y `  w )  =  if ( w  e.  z ,  .1.  ,  .0.  )  ->  ( D `  y
 )  =  .0.  ) }   =>    |-  ( ph  ->  D  =  ( B  X.  {  .0.  } ) )
 
Theoremmdetuni0 20427* Lemma for mdetuni 20428. (Contributed by SO, 15-Jul-2018.)
 |-  A  =  ( N Mat 
 R )   &    |-  B  =  (
 Base `  A )   &    |-  K  =  ( Base `  R )   &    |-  .0.  =  ( 0g `  R )   &    |- 
 .1.  =  ( 1r `  R )   &    |-  .+  =  ( +g  `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  ( ph  ->  N  e.  Fin )   &    |-  ( ph  ->  R  e.  Ring )   &    |-  ( ph  ->  D : B --> K )   &    |-  ( ph  ->  A. x  e.  B  A. y  e.  N  A. z  e.  N  ( ( y  =/=  z  /\  A. w  e.  N  (
 y x w )  =  ( z x w ) )  ->  ( D `  x )  =  .0.  ) )   &    |-  ( ph  ->  A. x  e.  B  A. y  e.  B  A. z  e.  B  A. w  e.  N  ( ( ( x  |`  ( { w }  X.  N ) )  =  ( ( y  |`  ( { w }  X.  N ) )  oF  .+  ( z  |`  ( { w }  X.  N ) ) )  /\  ( x  |`  ( ( N 
 \  { w }
 )  X.  N )
 )  =  ( y  |`  ( ( N  \  { w } )  X.  N ) )  /\  ( x  |`  ( ( N  \  { w } )  X.  N ) )  =  ( z  |`  ( ( N  \  { w } )  X.  N ) ) ) 
 ->  ( D `  x )  =  ( ( D `  y )  .+  ( D `  z ) ) ) )   &    |-  ( ph  ->  A. x  e.  B  A. y  e.  K  A. z  e.  B  A. w  e.  N  ( ( ( x  |`  ( { w }  X.  N ) )  =  ( ( ( { w }  X.  N )  X.  {
 y } )  oF  .x.  ( z  |`  ( { w }  X.  N ) ) ) 
 /\  ( x  |`  ( ( N  \  { w } )  X.  N ) )  =  ( z  |`  ( ( N  \  { w } )  X.  N ) ) )  ->  ( D `  x )  =  ( y  .x.  ( D `  z ) ) ) )   &    |-  E  =  ( N maDet  R )   &    |-  ( ph  ->  R  e.  CRing )   &    |-  ( ph  ->  F  e.  B )   =>    |-  ( ph  ->  ( D `  F )  =  ( ( D `  ( 1r `  A ) )  .x.  ( E `  F ) ) )
 
Theoremmdetuni 20428* According to the definition in [Weierstrass] p. 272, the determinant function is the unique multilinear, alternating and normalized function from the algebra of square matrices of the same dimension over a commutative ring to this ring. So for any multilinear (mdetuni.li and mdetuni.sc), alternating (mdetuni.al) and normalized (mdetuni.no) function D (mdetuni.ff) from the algebra of square matrices (mdetuni.a) to their underlying commutative ring (mdetuni.cr), the function value of this function D for a matrix F (mdetuni.f) is the determinant of this matrix. (Contributed by Stefan O'Rear, 15-Jul-2018.) (Revised by Alexander van der Vekens, 8-Feb-2019.)
 |-  A  =  ( N Mat 
 R )   &    |-  B  =  (
 Base `  A )   &    |-  K  =  ( Base `  R )   &    |-  .0.  =  ( 0g `  R )   &    |- 
 .1.  =  ( 1r `  R )   &    |-  .+  =  ( +g  `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  ( ph  ->  N  e.  Fin )   &    |-  ( ph  ->  R  e.  Ring )   &    |-  ( ph  ->  D : B --> K )   &    |-  ( ph  ->  A. x  e.  B  A. y  e.  N  A. z  e.  N  ( ( y  =/=  z  /\  A. w  e.  N  (
 y x w )  =  ( z x w ) )  ->  ( D `  x )  =  .0.  ) )   &    |-  ( ph  ->  A. x  e.  B  A. y  e.  B  A. z  e.  B  A. w  e.  N  ( ( ( x  |`  ( { w }  X.  N ) )  =  ( ( y  |`  ( { w }  X.  N ) )  oF  .+  ( z  |`  ( { w }  X.  N ) ) )  /\  ( x  |`  ( ( N 
 \  { w }
 )  X.  N )
 )  =  ( y  |`  ( ( N  \  { w } )  X.  N ) )  /\  ( x  |`  ( ( N  \  { w } )  X.  N ) )  =  ( z  |`  ( ( N  \  { w } )  X.  N ) ) ) 
 ->  ( D `  x )  =  ( ( D `  y )  .+  ( D `  z ) ) ) )   &    |-  ( ph  ->  A. x  e.  B  A. y  e.  K  A. z  e.  B  A. w  e.  N  ( ( ( x  |`  ( { w }  X.  N ) )  =  ( ( ( { w }  X.  N )  X.  {
 y } )  oF  .x.  ( z  |`  ( { w }  X.  N ) ) ) 
 /\  ( x  |`  ( ( N  \  { w } )  X.  N ) )  =  ( z  |`  ( ( N  \  { w } )  X.  N ) ) )  ->  ( D `  x )  =  ( y  .x.  ( D `  z ) ) ) )   &    |-  E  =  ( N maDet  R )   &    |-  ( ph  ->  R  e.  CRing )   &    |-  ( ph  ->  F  e.  B )   &    |-  ( ph  ->  ( D `  ( 1r
 `  A ) )  =  .1.  )   =>    |-  ( ph  ->  ( D `  F )  =  ( E `  F ) )
 
Theoremmdetmul 20429 Multiplicativity of the determinant function: the determinant of a matrix product of square matrices equals the product of their determinants. Proposition 4.15 in [Lang] p. 517. (Contributed by Stefan O'Rear, 16-Jul-2018.)
 |-  A  =  ( N Mat 
 R )   &    |-  B  =  (
 Base `  A )   &    |-  D  =  ( N maDet  R )   &    |-  .x. 
 =  ( .r `  R )   &    |-  .xb  =  ( .r `  A )   =>    |-  ( ( R  e.  CRing  /\  F  e.  B  /\  G  e.  B )  ->  ( D `  ( F  .xb  G ) )  =  ( ( D `  F ) 
 .x.  ( D `  G ) ) )
 
11.3.2  Determinants of 2 x 2 -matrices
 
Theoremm2detleiblem1 20430 Lemma 1 for m2detleib 20437. (Contributed by AV, 12-Dec-2018.)
 |-  N  =  { 1 ,  2 }   &    |-  P  =  ( Base `  ( SymGrp `  N ) )   &    |-  Y  =  ( ZRHom `  R )   &    |-  S  =  (pmSgn `  N )   &    |-  .1.  =  ( 1r `  R )   =>    |-  ( ( R  e.  Ring  /\  Q  e.  P ) 
 ->  ( Y `  ( S `  Q ) )  =  ( ( (pmSgn `  N ) `  Q ) (.g `  R )  .1.  ) )
 
Theoremm2detleiblem5 20431 Lemma 5 for m2detleib 20437. (Contributed by AV, 20-Dec-2018.)
 |-  N  =  { 1 ,  2 }   &    |-  P  =  ( Base `  ( SymGrp `  N ) )   &    |-  Y  =  ( ZRHom `  R )   &    |-  S  =  (pmSgn `  N )   &    |-  .1.  =  ( 1r `  R )   =>    |-  ( ( R  e.  Ring  /\  Q  =  { <. 1 ,  1 >. ,  <. 2 ,  2 >. } )  ->  ( Y `  ( S `  Q ) )  =  .1.  )
 
Theoremm2detleiblem6 20432 Lemma 6 for m2detleib 20437. (Contributed by AV, 20-Dec-2018.)
 |-  N  =  { 1 ,  2 }   &    |-  P  =  ( Base `  ( SymGrp `  N ) )   &    |-  Y  =  ( ZRHom `  R )   &    |-  S  =  (pmSgn `  N )   &    |-  .1.  =  ( 1r `  R )   &    |-  I  =  ( invg `  R )   =>    |-  ( ( R  e.  Ring  /\  Q  =  { <. 1 ,  2 >. ,  <. 2 ,  1 >. } )  ->  ( Y `  ( S `  Q ) )  =  ( I `  .1.  ) )
 
Theoremm2detleiblem7 20433 Lemma 7 for m2detleib 20437. (Contributed by AV, 20-Dec-2018.)
 |-  N  =  { 1 ,  2 }   &    |-  P  =  ( Base `  ( SymGrp `  N ) )   &    |-  Y  =  ( ZRHom `  R )   &    |-  S  =  (pmSgn `  N )   &    |-  .1.  =  ( 1r `  R )   &    |-  I  =  ( invg `  R )   &    |-  .x. 
 =  ( .r `  R )   &    |-  .-  =  ( -g `  R )   =>    |-  ( ( R  e.  Ring  /\  X  e.  ( Base `  R )  /\  Z  e.  ( Base `  R ) )  ->  ( X ( +g  `  R ) ( ( I `
  .1.  )  .x.  Z ) )  =  ( X  .-  Z )
 )
 
Theoremm2detleiblem2 20434* Lemma 2 for m2detleib 20437. (Contributed by AV, 16-Dec-2018.) (Proof shortened by AV, 1-Jan-2019.)
 |-  N  =  { 1 ,  2 }   &    |-  P  =  ( Base `  ( SymGrp `  N ) )   &    |-  A  =  ( N Mat  R )   &    |-  B  =  ( Base `  A )   &    |-  G  =  (mulGrp `  R )   =>    |-  (
 ( R  e.  Ring  /\  Q  e.  P  /\  M  e.  B )  ->  ( G  gsumg  ( n  e.  N  |->  ( ( Q `  n ) M n ) ) )  e.  ( Base `  R )
 )
 
Theoremm2detleiblem3 20435* Lemma 3 for m2detleib 20437. (Contributed by AV, 16-Dec-2018.) (Proof shortened by AV, 2-Jan-2019.)
 |-  N  =  { 1 ,  2 }   &    |-  P  =  ( Base `  ( SymGrp `  N ) )   &    |-  A  =  ( N Mat  R )   &    |-  B  =  ( Base `  A )   &    |-  G  =  (mulGrp `  R )   &    |-  .x.  =  ( +g  `  G )   =>    |-  (
 ( R  e.  Ring  /\  Q  =  { <. 1 ,  1 >. ,  <. 2 ,  2 >. }  /\  M  e.  B )  ->  ( G  gsumg  ( n  e.  N  |->  ( ( Q `  n ) M n ) ) )  =  ( ( 1 M 1 )  .x.  (
 2 M 2 ) ) )
 
Theoremm2detleiblem4 20436* Lemma 4 for m2detleib 20437. (Contributed by AV, 20-Dec-2018.) (Proof shortened by AV, 2-Jan-2019.)
 |-  N  =  { 1 ,  2 }   &    |-  P  =  ( Base `  ( SymGrp `  N ) )   &    |-  A  =  ( N Mat  R )   &    |-  B  =  ( Base `  A )   &    |-  G  =  (mulGrp `  R )   &    |-  .x.  =  ( +g  `  G )   =>    |-  (
 ( R  e.  Ring  /\  Q  =  { <. 1 ,  2 >. ,  <. 2 ,  1 >. }  /\  M  e.  B )  ->  ( G  gsumg  ( n  e.  N  |->  ( ( Q `  n ) M n ) ) )  =  ( ( 2 M 1 )  .x.  (
 1 M 2 ) ) )
 
Theoremm2detleib 20437 Leibniz' Formula for 2x2-matrices. (Contributed by AV, 21-Dec-2018.) (Revised by AV, 26-Dec-2018.) (Proof shortened by AV, 23-Jul-2019.)
 |-  N  =  { 1 ,  2 }   &    |-  D  =  ( N maDet  R )   &    |-  A  =  ( N Mat  R )   &    |-  B  =  (
 Base `  A )   &    |-  .-  =  ( -g `  R )   &    |-  .x. 
 =  ( .r `  R )   =>    |-  ( ( R  e.  Ring  /\  M  e.  B ) 
 ->  ( D `  M )  =  ( (
 ( 1 M 1 )  .x.  ( 2 M 2 ) ) 
 .-  ( ( 2 M 1 )  .x.  ( 1 M 2 ) ) ) )
 
11.3.3  The matrix adjugate/adjunct
 
Syntaxcmadu 20438 Syntax for the matrix adjugate/adjunct function.
 class maAdju
 
Syntaxcminmar1 20439 Syntax for the minor matrices of a square matrix.
 class minMatR1
 
Definitiondf-madu 20440* Define the adjugate or adjunct (matrix of cofactors) of a square matrix. This definition gives the standard cofactors, however the internal minors are not the standard minors, see definition in [Lang] p. 518. (Contributed by Stefan O'Rear, 7-Sep-2015.) (Revised by SO, 10-Jul-2018.)
 |- maAdju  =  ( n  e.  _V ,  r  e.  _V  |->  ( m  e.  ( Base `  ( n Mat  r
 ) )  |->  ( i  e.  n ,  j  e.  n  |->  ( ( n maDet  r ) `  ( k  e.  n ,  l  e.  n  |->  if ( k  =  j ,  if ( l  =  i ,  ( 1r `  r ) ,  ( 0g `  r
 ) ) ,  (
 k m l ) ) ) ) ) ) )
 
Definitiondf-minmar1 20441* Define the matrices whose determinants are the minors of a square matrix. In contrast to the standard definition of minors, a row is replaced by 0's and one 1 instead of deleting the column and row (e.g., definition in [Lang] p. 515). By this, the determinant of such a matrix is equal to the minor determined in the standard way (as determinant of a submatrix, see df-subma 20383- note that the matrix is transposed compared with the submatrix defined in df-subma 20383, but this does not matter because the determinants are the same, see mdettpos 20417). Such matrices are used in the definition of an adjunct of a square matrix, see df-madu 20440. (Contributed by AV, 27-Dec-2018.)
 |- minMatR1  =  ( n  e.  _V ,  r  e.  _V  |->  ( m  e.  ( Base `  ( n Mat  r
 ) )  |->  ( k  e.  n ,  l  e.  n  |->  ( i  e.  n ,  j  e.  n  |->  if (
 i  =  k ,  if ( j  =  l ,  ( 1r
 `  r ) ,  ( 0g `  r
 ) ) ,  (
 i m j ) ) ) ) ) )
 
Theoremmndifsplit 20442 Lemma for maducoeval2 20446. (Contributed by SO, 16-Jul-2018.)
 |-  B  =  ( Base `  M )   &    |-  .0.  =  ( 0g `  M )   &    |-  .+  =  ( +g  `  M )   =>    |-  ( ( M  e.  Mnd  /\  A  e.  B  /\  -.  ( ph  /\  ps ) )  ->  if (
 ( ph  \/  ps ) ,  A ,  .0.  )  =  ( if ( ph ,  A ,  .0.  )  .+  if ( ps ,  A ,  .0.  )
 ) )
 
Theoremmadufval 20443* First substitution for the adjunct (cofactor) matrix. (Contributed by SO, 11-Jul-2018.)
 |-  A  =  ( N Mat 
 R )   &    |-  D  =  ( N maDet  R )   &    |-  J  =  ( N maAdju  R )   &    |-  B  =  ( Base `  A )   &    |-  .1.  =  ( 1r `  R )   &    |- 
 .0.  =  ( 0g `  R )   =>    |-  J  =  ( m  e.  B  |->  ( i  e.  N ,  j  e.  N  |->  ( D `  ( k  e.  N ,  l  e.  N  |->  if ( k  =  j ,  if ( l  =  i ,  .1.  ,  .0.  ) ,  (
 k m l ) ) ) ) ) )
 
Theoremmaduval 20444* Second substitution for the adjunct (cofactor) matrix. (Contributed by SO, 11-Jul-2018.)
 |-  A  =  ( N Mat 
 R )   &    |-  D  =  ( N maDet  R )   &    |-  J  =  ( N maAdju  R )   &    |-  B  =  ( Base `  A )   &    |-  .1.  =  ( 1r `  R )   &    |- 
 .0.  =  ( 0g `  R )   =>    |-  ( M  e.  B  ->  ( J `  M )  =  ( i  e.  N ,  j  e.  N  |->  ( D `  ( k  e.  N ,  l  e.  N  |->  if ( k  =  j ,  if ( l  =  i ,  .1.  ,  .0.  ) ,  (
 k M l ) ) ) ) ) )
 
Theoremmaducoeval 20445* An entry of the adjunct (cofactor) matrix. (Contributed by SO, 11-Jul-2018.)
 |-  A  =  ( N Mat 
 R )   &    |-  D  =  ( N maDet  R )   &    |-  J  =  ( N maAdju  R )   &    |-  B  =  ( Base `  A )   &    |-  .1.  =  ( 1r `  R )   &    |- 
 .0.  =  ( 0g `  R )   =>    |-  ( ( M  e.  B  /\  I  e.  N  /\  H  e.  N ) 
 ->  ( I ( J `
  M ) H )  =  ( D `
  ( k  e.  N ,  l  e.  N  |->  if ( k  =  H ,  if (
 l  =  I ,  .1.  ,  .0.  ) ,  ( k M l ) ) ) ) )
 
Theoremmaducoeval2 20446* An entry of the adjunct (cofactor) matrix. (Contributed by SO, 17-Jul-2018.)
 |-  A  =  ( N Mat 
 R )   &    |-  D  =  ( N maDet  R )   &    |-  J  =  ( N maAdju  R )   &    |-  B  =  ( Base `  A )   &    |-  .1.  =  ( 1r `  R )   &    |- 
 .0.  =  ( 0g `  R )   =>    |-  ( ( ( R  e.  CRing  /\  M  e.  B )  /\  I  e.  N  /\  H  e.  N )  ->  ( I ( J `  M ) H )  =  ( D `  ( k  e.  N ,  l  e.  N  |->  if ( ( k  =  H  \/  l  =  I ) ,  if ( ( l  =  I  /\  k  =  H ) ,  .1.  ,  .0.  ) ,  (
 k M l ) ) ) ) )
 
Theoremmaduf 20447 Creating the adjunct of matrices is a function from the set of matrices into the set of matrices. (Contributed by Stefan O'Rear, 11-Jul-2018.)
 |-  A  =  ( N Mat 
 R )   &    |-  J  =  ( N maAdju  R )   &    |-  B  =  (
 Base `  A )   =>    |-  ( R  e.  CRing  ->  J : B --> B )
 
Theoremmadutpos 20448 The adjuct of a transposed matrix is the transposition of the adjunct of the matrix. (Contributed by Stefan O'Rear, 17-Jul-2018.)
 |-  A  =  ( N Mat 
 R )   &    |-  J  =  ( N maAdju  R )   &    |-  B  =  (
 Base `  A )   =>    |-  ( ( R  e.  CRing  /\  M  e.  B )  ->  ( J `
 tpos  M )  = tpos  ( J `  M ) )
 
Theoremmadugsum 20449* The determinant of a matrix with a row  L consisting of the same element  X is the sum of the elements of the  L-th column of the adjunct of the matrix multiplied with  X. (Contributed by Stefan O'Rear, 16-Jul-2018.)
 |-  A  =  ( N Mat 
 R )   &    |-  J  =  ( N maAdju  R )   &    |-  B  =  (
 Base `  A )   &    |-  D  =  ( N maDet  R )   &    |-  .x. 
 =  ( .r `  R )   &    |-  K  =  (
 Base `  R )   &    |-  ( ph  ->  M  e.  B )   &    |-  ( ph  ->  R  e.  CRing )   &    |-  ( ( ph  /\  i  e.  N ) 
 ->  X  e.  K )   &    |-  ( ph  ->  L  e.  N )   =>    |-  ( ph  ->  ( R  gsumg  ( i  e.  N  |->  ( X  .x.  ( i ( J `  M ) L ) ) ) )  =  ( D `
  ( j  e.  N ,  i  e.  N  |->  if ( j  =  L ,  X ,  ( j M i ) ) ) ) )
 
Theoremmadurid 20450 Multiplying a matrix with its adjunct results in the identity matrix multiplied with the determinant of the matrix. See Proposition 4.16 in [Lang] p. 518. (Contributed by Stefan O'Rear, 16-Jul-2018.)
 |-  A  =  ( N Mat 
 R )   &    |-  B  =  (
 Base `  A )   &    |-  J  =  ( N maAdju  R )   &    |-  D  =  ( N maDet  R )   &    |-  .1.  =  ( 1r `  A )   &    |-  .x.  =  ( .r `  A )   &    |-  .xb  =  ( .s `  A )   =>    |-  ( ( M  e.  B  /\  R  e.  CRing ) 
 ->  ( M  .x.  ( J `  M ) )  =  ( ( D `
  M )  .xb  .1.  ) )
 
Theoremmadulid 20451 Multiplying the adjunct of a matrix with the matrix results in the identity matrix multiplied with the determinant of the matrix. See Proposition 4.16 in [Lang] p. 518. (Contributed by Stefan O'Rear, 17-Jul-2018.)
 |-  A  =  ( N Mat 
 R )   &    |-  B  =  (
 Base `  A )   &    |-  J  =  ( N maAdju  R )   &    |-  D  =  ( N maDet  R )   &    |-  .1.  =  ( 1r `  A )   &    |-  .x.  =  ( .r `  A )   &    |-  .xb  =  ( .s `  A )   =>    |-  ( ( M  e.  B  /\  R  e.  CRing ) 
 ->  ( ( J `  M )  .x.  M )  =  ( ( D `
  M )  .xb  .1.  ) )
 
Theoremminmar1fval 20452* First substitution for the definition of a matrix for a minor. (Contributed by AV, 31-Dec-2018.)
 |-  A  =  ( N Mat 
 R )   &    |-  B  =  (
 Base `  A )   &    |-  Q  =  ( N minMatR1  R )   &    |-  .1.  =  ( 1r `  R )   &    |- 
 .0.  =  ( 0g `  R )   =>    |-  Q  =  ( m  e.  B  |->  ( k  e.  N ,  l  e.  N  |->  ( i  e.  N ,  j  e.  N  |->  if ( i  =  k ,  if (
 j  =  l ,  .1.  ,  .0.  ) ,  ( i m j ) ) ) ) )
 
Theoremminmar1val0 20453* Second substitution for the definition of a matrix for a minor. (Contributed by AV, 31-Dec-2018.)
 |-  A  =  ( N Mat 
 R )   &    |-  B  =  (
 Base `  A )   &    |-  Q  =  ( N minMatR1  R )   &    |-  .1.  =  ( 1r `  R )   &    |- 
 .0.  =  ( 0g `  R )   =>    |-  ( M  e.  B  ->  ( Q `  M )  =  ( k  e.  N ,  l  e.  N  |->  ( i  e.  N ,  j  e.  N  |->  if ( i  =  k ,  if (
 j  =  l ,  .1.  ,  .0.  ) ,  ( i M j ) ) ) ) )
 
Theoremminmar1val 20454* Third substitution for the definition of a matrix for a minor. (Contributed by AV, 31-Dec-2018.)
 |-  A  =  ( N Mat 
 R )   &    |-  B  =  (
 Base `  A )   &    |-  Q  =  ( N minMatR1  R )   &    |-  .1.  =  ( 1r `  R )   &    |- 
 .0.  =  ( 0g `  R )   =>    |-  ( ( M  e.  B  /\  K  e.  N  /\  L  e.  N ) 
 ->  ( K ( Q `
  M ) L )  =  ( i  e.  N ,  j  e.  N  |->  if ( i  =  K ,  if (
 j  =  L ,  .1.  ,  .0.  ) ,  ( i M j ) ) ) )
 
Theoremminmar1eval 20455 An entry of a matrix for a minor. (Contributed by AV, 31-Dec-2018.)
 |-  A  =  ( N Mat 
 R )   &    |-  B  =  (
 Base `  A )   &    |-  Q  =  ( N minMatR1  R )   &    |-  .1.  =  ( 1r `  R )   &    |- 
 .0.  =  ( 0g `  R )   =>    |-  ( ( M  e.  B  /\  ( K  e.  N  /\  L  e.  N )  /\  ( I  e.  N  /\  J  e.  N ) )  ->  ( I ( K ( Q `  M ) L ) J )  =  if ( I  =  K ,  if ( J  =  L ,  .1.  ,  .0.  ) ,  ( I M J ) ) )
 
Theoremminmar1marrep 20456 The minor matrix is a special case of a matrix with a replaced row. (Contributed by AV, 12-Feb-2019.)
 |-  A  =  ( N Mat 
 R )   &    |-  B  =  (
 Base `  A )   &    |-  Q  =  ( N matRRep  R )   &    |-  .1.  =  ( 1r `  R )   =>    |-  ( ( R  e.  Ring  /\  M  e.  B ) 
 ->  ( ( N minMatR1  R ) `
  M )  =  ( M ( N matRRep  R )  .1.  )
 )
 
Theoremminmar1cl 20457 Closure of the row replacement function for square matrices: The matrix for a minor is a matrix. (Contributed by AV, 13-Feb-2019.)
 |-  A  =  ( N Mat 
 R )   &    |-  B  =  (
 Base `  A )   =>    |-  ( ( ( R  e.  Ring  /\  M  e.  B )  /\  ( K  e.  N  /\  L  e.  N )
 )  ->  ( K ( ( N minMatR1  R ) `
  M ) L )  e.  B )
 
Theoremmaducoevalmin1 20458 The coefficients of an adjunct (matrix of cofactors) expressed as determinants of the minor matrices (alternative definition) of the original matrix. (Contributed by AV, 31-Dec-2018.)
 |-  A  =  ( N Mat 
 R )   &    |-  B  =  (
 Base `  A )   &    |-  D  =  ( N maDet  R )   &    |-  J  =  ( N maAdju  R )   =>    |-  ( ( M  e.  B  /\  I  e.  N  /\  H  e.  N ) 
 ->  ( I ( J `
  M ) H )  =  ( D `
  ( H ( ( N minMatR1  R ) `  M ) I ) ) )
 
11.3.4  Laplace expansion of determinants (special case)

According to Wikipedia ("Laplace expansion", 08-Mar-2019, https://en.wikipedia.org/wiki/Laplace_expansion) "In linear algebra, the Laplace expansion, named after Pierre-Simon Laplace, also called cofactor expansion, is an expression for the determinant det(B) of an n x n -matrix B that is a weighted sum of the determinants of n sub-matrices of B, each of size (n-1) x (n-1)". The expansion is usually performed for a row of matrix B (alternately for a column of matrix B). The mentioned "sub-matrices" are the matrices resultung from deleting the i-th row and the j-th column of matrix B. The mentioned "weights" (factors/coefficients) are the elements at position i and j in matrix B. If the expansion is performed for a row, the coefficients are the elements of the selected row.

In the following, only the case where the row for the expansion contains only the zero element of the underlying ring except at the diagonal position. By this, the sum for the Laplace expansion is reduced to one summand, consisting of the element at the diagonal position multiplied with the determinant of the corresponding submatrix, see smadiadetg 20479 or smadiadetr 20481.

 
Theoremsymgmatr01lem 20459* Lemma for symgmatr01 20460. (Contributed by AV, 3-Jan-2019.)
 |-  P  =  ( Base `  ( SymGrp `  N )
 )   =>    |-  ( ( K  e.  N  /\  L  e.  N )  ->  ( Q  e.  ( P  \  { q  e.  P  |  ( q `
  K )  =  L } )  ->  E. k  e.  N  if ( k  =  K ,  if ( ( Q `
  k )  =  L ,  A ,  B ) ,  (
 k M ( Q `
  k ) ) )  =  B ) )
 
Theoremsymgmatr01 20460* Applying a permutation that does not fix a certain element of a set to a second element to an index of a matrix a row with 0's and a 1. (Contributed by AV, 3-Jan-2019.)
 |-  P  =  ( Base `  ( SymGrp `  N )
 )   &    |- 
 .0.  =  ( 0g `  R )   &    |-  .1.  =  ( 1r `  R )   =>    |-  ( ( K  e.  N  /\  L  e.  N )  ->  ( Q  e.  ( P  \  { q  e.  P  |  ( q `
  K )  =  L } )  ->  E. k  e.  N  ( k ( i  e.  N ,  j  e.  N  |->  if ( i  =  K ,  if (
 j  =  L ,  .1.  ,  .0.  ) ,  ( i M j ) ) ) ( Q `  k ) )  =  .0.  )
 )
 
Theoremgsummatr01lem1 20461* Lemma A for gsummatr01 20465. (Contributed by AV, 8-Jan-2019.)
 |-  P  =  ( Base `  ( SymGrp `  N )
 )   &    |-  R  =  { r  e.  P  |  ( r `
  K )  =  L }   =>    |-  ( ( Q  e.  R  /\  X  e.  N )  ->  ( Q `  X )  e.  N )
 
Theoremgsummatr01lem2 20462* Lemma B for gsummatr01 20465. (Contributed by AV, 8-Jan-2019.)
 |-  P  =  ( Base `  ( SymGrp `  N )
 )   &    |-  R  =  { r  e.  P  |  ( r `
  K )  =  L }   =>    |-  ( ( Q  e.  R  /\  X  e.  N )  ->  ( A. i  e.  N  A. j  e.  N  ( i A j )  e.  ( Base `  G )  ->  ( X A ( Q `
  X ) )  e.  ( Base `  G ) ) )
 
Theoremgsummatr01lem3 20463* Lemma 1 for gsummatr01 20465. (Contributed by AV, 8-Jan-2019.)
 |-  P  =  ( Base `  ( SymGrp `  N )
 )   &    |-  R  =  { r  e.  P  |  ( r `
  K )  =  L }   &    |-  .0.  =  ( 0g `  G )   &    |-  S  =  ( Base `  G )   =>    |-  ( ( ( G  e. CMnd  /\  N  e.  Fin )  /\  ( A. i  e.  N  A. j  e.  N  ( i A j )  e.  S  /\  B  e.  S ) 
 /\  ( K  e.  N  /\  L  e.  N  /\  Q  e.  R ) )  ->  ( G  gsumg  ( n  e.  ( ( N  \  { K }
 )  u.  { K } )  |->  ( n ( i  e.  N ,  j  e.  N  |->  if ( i  =  K ,  if ( j  =  L ,  .0.  ,  B ) ,  (
 i A j ) ) ) ( Q `
  n ) ) ) )  =  ( ( G  gsumg  ( n  e.  ( N  \  { K }
 )  |->  ( n ( i  e.  N ,  j  e.  N  |->  if (
 i  =  K ,  if ( j  =  L ,  .0.  ,  B ) ,  ( i A j ) ) ) ( Q `  n ) ) ) ) ( +g  `  G ) ( K ( i  e.  N ,  j  e.  N  |->  if (
 i  =  K ,  if ( j  =  L ,  .0.  ,  B ) ,  ( i A j ) ) ) ( Q `  K ) ) ) )
 
Theoremgsummatr01lem4 20464* Lemma 2 for gsummatr01 20465. (Contributed by AV, 8-Jan-2019.)
 |-  P  =  ( Base `  ( SymGrp `  N )
 )   &    |-  R  =  { r  e.  P  |  ( r `
  K )  =  L }   &    |-  .0.  =  ( 0g `  G )   &    |-  S  =  ( Base `  G )   =>    |-  ( ( ( ( G  e. CMnd  /\  N  e.  Fin )  /\  ( A. i  e.  N  A. j  e.  N  ( i A j )  e.  S  /\  B  e.  S ) 
 /\  ( K  e.  N  /\  L  e.  N  /\  Q  e.  R ) )  /\  n  e.  ( N  \  { K } ) )  ->  ( n ( i  e.  N ,  j  e.  N  |->  if ( i  =  K ,  if (
 j  =  L ,  .0.  ,  B ) ,  ( i A j ) ) ) ( Q `  n ) )  =  ( n ( i  e.  ( N  \  { K }
 ) ,  j  e.  ( N  \  { L } )  |->  ( i A j ) ) ( Q `  n ) ) )
 
Theoremgsummatr01 20465* Lemma 1 for smadiadetlem4 20475. (Contributed by AV, 8-Jan-2019.)
 |-  P  =  ( Base `  ( SymGrp `  N )
 )   &    |-  R  =  { r  e.  P  |  ( r `
  K )  =  L }   &    |-  .0.  =  ( 0g `  G )   &    |-  S  =  ( Base `  G )   =>    |-  ( ( ( G  e. CMnd  /\  N  e.  Fin )  /\  ( A. i  e.  N  A. j  e.  N  ( i A j )  e.  S  /\  B  e.  S ) 
 /\  ( K  e.  N  /\  L  e.  N  /\  Q  e.  R ) )  ->  ( G  gsumg  ( n  e.  N  |->  ( n ( i  e.  N ,  j  e.  N  |->  if ( i  =  K ,  if ( j  =  L ,  .0.  ,  B ) ,  (
 i A j ) ) ) ( Q `
  n ) ) ) )  =  ( G  gsumg  ( n  e.  ( N  \  { K }
 )  |->  ( n ( i  e.  ( N 
 \  { K }
 ) ,  j  e.  ( N  \  { L } )  |->  ( i A j ) ) ( Q `  n ) ) ) ) )
 
Theoremmarep01ma 20466* Replacing a row of a square matrix by a row with 0's and a 1 results in a square matrix of the same dimension. (Contributed by AV, 30-Dec-2018.)
 |-  A  =  ( N Mat 
 R )   &    |-  B  =  (
 Base `  A )   &    |-  R  e.  CRing   &    |- 
 .0.  =  ( 0g `  R )   &    |-  .1.  =  ( 1r `  R )   =>    |-  ( M  e.  B  ->  ( k  e.  N ,  l  e.  N  |->  if ( k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  ( k M l ) ) )  e.  B )
 
Theoremsmadiadetlem0 20467* Lemma 0 for smadiadet 20476: The products of the Leibniz' formula vanish for all permutations fixing the index of the row containing the 0's and the 1 to the column with the 1. (Contributed by AV, 3-Jan-2019.)
 |-  A  =  ( N Mat 
 R )   &    |-  B  =  (
 Base `  A )   &    |-  R  e.  CRing   &    |- 
 .0.  =  ( 0g `  R )   &    |-  .1.  =  ( 1r `  R )   &    |-  P  =  ( Base `  ( SymGrp `  N )
 )   &    |-  G  =  (mulGrp `  R )   =>    |-  ( ( M  e.  B  /\  K  e.  N  /\  L  e.  N ) 
 ->  ( Q  e.  ( P  \  { q  e.  P  |  ( q `
  K )  =  L } )  ->  ( G  gsumg  ( n  e.  N  |->  ( n ( i  e.  N ,  j  e.  N  |->  if ( i  =  K ,  if (
 j  =  L ,  .1.  ,  .0.  ) ,  ( i M j ) ) ) ( Q `  n ) ) ) )  =  .0.  ) )
 
Theoremsmadiadetlem1 20468* Lemma 1 for smadiadet 20476: A summand of the determinant of a matrix belongs to the underlying ring. (Contributed by AV, 1-Jan-2019.)
 |-  A  =  ( N Mat 
 R )   &    |-  B  =  (
 Base `  A )   &    |-  R  e.  CRing   &    |- 
 .0.  =  ( 0g `  R )   &    |-  .1.  =  ( 1r `  R )   &    |-  P  =  ( Base `  ( SymGrp `  N )
 )   &    |-  G  =  (mulGrp `  R )   &    |-  Y  =  ( ZRHom `  R )   &    |-  S  =  (pmSgn `  N )   &    |-  .x.  =  ( .r `  R )   =>    |-  ( ( ( M  e.  B  /\  K  e.  N )  /\  p  e.  P )  ->  ( ( ( Y  o.  S ) `
  p ) ( .r `  R ) ( G  gsumg  ( n  e.  N  |->  ( n ( i  e.  N ,  j  e.  N  |->  if ( i  =  K ,  if (
 j  =  K ,  .1.  ,  .0.  ) ,  ( i M j ) ) ) ( p `  n ) ) ) ) )  e.  ( Base `  R ) )
 
Theoremsmadiadetlem1a 20469* Lemma 1a for smadiadet 20476: The summands of the Leibniz' formula vanish for all permutations fixing the index of the row containing the 0's and the 1 to the column with the 1. (Contributed by AV, 3-Jan-2019.)
 |-  A  =  ( N Mat 
 R )   &    |-  B  =  (
 Base `  A )   &    |-  R  e.  CRing   &    |- 
 .0.  =  ( 0g `  R )   &    |-  .1.  =  ( 1r `  R )   &    |-  P  =  ( Base `  ( SymGrp `  N )
 )   &    |-  G  =  (mulGrp `  R )   &    |-  Y  =  ( ZRHom `  R )   &    |-  S  =  (pmSgn `  N )   &    |-  .x.  =  ( .r `  R )   =>    |-  ( ( M  e.  B  /\  K  e.  N  /\  L  e.  N )  ->  ( R 
 gsumg  ( p  e.  ( P  \  { q  e.  P  |  ( q `
  K )  =  L } )  |->  ( ( ( Y  o.  S ) `  p )  .x.  ( G  gsumg  ( n  e.  N  |->  ( n ( i  e.  N ,  j  e.  N  |->  if ( i  =  K ,  if ( j  =  L ,  .1.  ,  .0.  ) ,  ( i M j ) ) ) ( p `  n ) ) ) ) ) ) )  =  .0.  )
 
Theoremsmadiadetlem2 20470* Lemma 2 for smadiadet 20476: The summands of the Leibniz' formula vanish for all permutations fixing the index of the row containing the 0's and the 1 to itself. (Contributed by AV, 31-Dec-2018.)
 |-  A  =  ( N Mat 
 R )   &    |-  B  =  (
 Base `  A )   &    |-  R  e.  CRing   &    |- 
 .0.  =  ( 0g `  R )   &    |-  .1.  =  ( 1r `  R )   &    |-  P  =  ( Base `  ( SymGrp `  N )
 )   &    |-  G  =  (mulGrp `  R )   &    |-  Y  =  ( ZRHom `  R )   &    |-  S  =  (pmSgn `  N )   &    |-  .x.  =  ( .r `  R )   =>    |-  ( ( M  e.  B  /\  K  e.  N )  ->  ( R  gsumg  ( p  e.  ( P  \  { q  e.  P  |  ( q `
  K )  =  K } )  |->  ( ( ( Y  o.  S ) `  p )  .x.  ( G  gsumg  ( n  e.  N  |->  ( n ( i  e.  N ,  j  e.  N  |->  if ( i  =  K ,  if ( j  =  K ,  .1.  ,  .0.  ) ,  ( i M j ) ) ) ( p `  n ) ) ) ) ) ) )  =  .0.  )
 
Theoremsmadiadetlem3lem0 20471* Lemma 0 for smadiadetlem3 20474. (Contributed by AV, 12-Jan-2019.)
 |-  A  =  ( N Mat 
 R )   &    |-  B  =  (
 Base `  A )   &    |-  R  e.  CRing   &    |- 
 .0.  =  ( 0g `  R )   &    |-  .1.  =  ( 1r `  R )   &    |-  P  =  ( Base `  ( SymGrp `  N )
 )   &    |-  G  =  (mulGrp `  R )   &    |-  Y  =  ( ZRHom `  R )   &    |-  S  =  (pmSgn `  N )   &    |-  .x.  =  ( .r `  R )   &    |-  W  =  ( Base `  ( SymGrp `  ( N  \  { K }
 ) ) )   &    |-  Z  =  (pmSgn `  ( N  \  { K } )
 )   =>    |-  ( ( ( M  e.  B  /\  K  e.  N )  /\  Q  e.  W )  ->  (
 ( ( Y  o.  Z ) `  Q ) ( .r `  R ) ( G 
 gsumg  ( n  e.  ( N  \  { K }
 )  |->  ( n ( i  e.  ( N 
 \  { K }
 ) ,  j  e.  ( N  \  { K } )  |->  ( i M j ) ) ( Q `  n ) ) ) ) )  e.  ( Base `  R ) )
 
Theoremsmadiadetlem3lem1 20472* Lemma 1 for smadiadetlem3 20474. (Contributed by AV, 12-Jan-2019.)
 |-  A  =  ( N Mat 
 R )   &    |-  B  =  (
 Base `  A )   &    |-  R  e.  CRing   &    |- 
 .0.  =  ( 0g `  R )   &    |-  .1.  =  ( 1r `  R )   &    |-  P  =  ( Base `  ( SymGrp `  N )
 )   &    |-  G  =  (mulGrp `  R )   &    |-  Y  =  ( ZRHom `  R )   &    |-  S  =  (pmSgn `  N )   &    |-  .x.  =  ( .r `  R )   &    |-  W  =  ( Base `  ( SymGrp `  ( N  \  { K }
 ) ) )   &    |-  Z  =  (pmSgn `  ( N  \  { K } )
 )   =>    |-  ( ( M  e.  B  /\  K  e.  N )  ->  ( p  e.  W  |->  ( ( ( Y  o.  Z ) `
  p ) ( .r `  R ) ( G  gsumg  ( n  e.  ( N  \  { K }
 )  |->  ( n ( i  e.  ( N 
 \  { K }
 ) ,  j  e.  ( N  \  { K } )  |->  ( i M j ) ) ( p `  n ) ) ) ) ) ) : W --> ( Base `  R )
 )
 
Theoremsmadiadetlem3lem2 20473* Lemma 2 for smadiadetlem3 20474. (Contributed by AV, 12-Jan-2019.)
 |-  A  =  ( N Mat 
 R )   &    |-  B  =  (
 Base `  A )   &    |-  R  e.  CRing   &    |- 
 .0.  =  ( 0g `  R )   &    |-  .1.  =  ( 1r `  R )   &    |-  P  =  ( Base `  ( SymGrp `  N )
 )   &    |-  G  =  (mulGrp `  R )   &    |-  Y  =  ( ZRHom `  R )   &    |-  S  =  (pmSgn `  N )   &    |-  .x.  =  ( .r `  R )   &    |-  W  =  ( Base `  ( SymGrp `  ( N  \  { K }
 ) ) )   &    |-  Z  =  (pmSgn `  ( N  \  { K } )
 )   =>    |-  ( ( M  e.  B  /\  K  e.  N )  ->  ran  ( p  e.  W  |->  ( ( ( Y  o.  Z ) `
  p ) ( .r `  R ) ( G  gsumg  ( n  e.  ( N  \  { K }
 )  |->  ( n ( i  e.  ( N 
 \  { K }
 ) ,  j  e.  ( N  \  { K } )  |->  ( i M j ) ) ( p `  n ) ) ) ) ) )  C_  (
 (Cntz `  R ) `  ran  ( p  e.  W  |->  ( ( ( Y  o.  Z ) `
  p ) ( .r `  R ) ( G  gsumg  ( n  e.  ( N  \  { K }
 )  |->  ( n ( i  e.  ( N 
 \  { K }
 ) ,  j  e.  ( N  \  { K } )  |->  ( i M j ) ) ( p `  n ) ) ) ) ) ) ) )
 
Theoremsmadiadetlem3 20474* Lemma 3 for smadiadet 20476. (Contributed by AV, 31-Jan-2019.)
 |-  A  =  ( N Mat 
 R )   &    |-  B  =  (
 Base `  A )   &    |-  R  e.  CRing   &    |- 
 .0.  =  ( 0g `  R )   &    |-  .1.  =  ( 1r `  R )   &    |-  P  =  ( Base `  ( SymGrp `  N )
 )   &    |-  G  =  (mulGrp `  R )   &    |-  Y  =  ( ZRHom `  R )   &    |-  S  =  (pmSgn `  N )   &    |-  .x.  =  ( .r `  R )   &    |-  W  =  ( Base `  ( SymGrp `  ( N  \  { K }
 ) ) )   &    |-  Z  =  (pmSgn `  ( N  \  { K } )
 )   =>    |-  ( ( M  e.  B  /\  K  e.  N )  ->  ( R  gsumg  ( p  e.  { q  e.  P  |  ( q `
  K )  =  K }  |->  ( ( ( Y  o.  S ) `  p ) ( .r `  R ) ( G  gsumg  ( n  e.  ( N  \  { K }
 )  |->  ( n ( i  e.  ( N 
 \  { K }
 ) ,  j  e.  ( N  \  { K } )  |->  ( i M j ) ) ( p `  n ) ) ) ) ) ) )  =  ( R  gsumg  ( p  e.  W  |->  ( ( ( Y  o.  Z ) `  p ) ( .r
 `  R ) ( G  gsumg  ( n  e.  ( N  \  { K }
 )  |->  ( n ( i  e.  ( N 
 \  { K }
 ) ,  j  e.  ( N  \  { K } )  |->  ( i M j ) ) ( p `  n ) ) ) ) ) ) ) )
 
Theoremsmadiadetlem4 20475* Lemma 4 for smadiadet 20476. (Contributed by AV, 31-Jan-2019.)
 |-  A  =  ( N Mat 
 R )   &    |-  B  =  (
 Base `  A )   &    |-  R  e.  CRing   &    |- 
 .0.  =  ( 0g `  R )   &    |-  .1.  =  ( 1r `  R )   &    |-  P  =  ( Base `  ( SymGrp `  N )
 )   &    |-  G  =  (mulGrp `  R )   &    |-  Y  =  ( ZRHom `  R )   &    |-  S  =  (pmSgn `  N )   &    |-  .x.  =  ( .r `  R )   &    |-  W  =  ( Base `  ( SymGrp `  ( N  \  { K }
 ) ) )   &    |-  Z  =  (pmSgn `  ( N  \  { K } )
 )   =>    |-  ( ( M  e.  B  /\  K  e.  N )  ->  ( R  gsumg  ( p  e.  { q  e.  P  |  ( q `
  K )  =  K }  |->  ( ( ( Y  o.  S ) `  p ) ( .r `  R ) ( G  gsumg  ( n  e.  N  |->  ( n ( i  e.  N ,  j  e.  N  |->  if ( i  =  K ,  if (
 j  =  K ,  .1.  ,  .0.  ) ,  ( i M j ) ) ) ( p `  n ) ) ) ) ) ) )  =  ( R  gsumg  ( p  e.  W  |->  ( ( ( Y  o.  Z ) `  p ) ( .r
 `  R ) ( G  gsumg  ( n  e.  ( N  \  { K }
 )  |->  ( n ( i  e.  ( N 
 \  { K }
 ) ,  j  e.  ( N  \  { K } )  |->  ( i M j ) ) ( p `  n ) ) ) ) ) ) ) )
 
Theoremsmadiadet 20476 The determinant of a submatrix of a square matrix obtained by removing a row and a column at the same index equals the determinant of the original matrix with the row replaced with 0's and a 1 at the diagonal position. (Contributed by AV, 31-Jan-2019.) (Proof shortened by AV, 24-Jul-2019.)
 |-  A  =  ( N Mat 
 R )   &    |-  B  =  (
 Base `  A )   &    |-  R  e.  CRing   &    |-  D  =  ( N maDet  R )   &    |-  E  =  ( ( N  \  { K } ) maDet  R )   =>    |-  ( ( M  e.  B  /\  K  e.  N )  ->  ( E `  ( K ( ( N subMat  R ) `  M ) K ) )  =  ( D `  ( K ( ( N minMatR1  R ) `  M ) K ) ) )
 
Theoremsmadiadetglem1 20477 Lemma 1 for smadiadetg 20479. (Contributed by AV, 13-Feb-2019.)
 |-  A  =  ( N Mat 
 R )   &    |-  B  =  (
 Base `  A )   &    |-  R  e.  CRing   &    |-  D  =  ( N maDet  R )   &    |-  E  =  ( ( N  \  { K } ) maDet  R )   =>    |-  ( ( M  e.  B  /\  K  e.  N  /\  S  e.  ( Base `  R ) )  ->  ( ( K ( M ( N matRRep  R ) S ) K )  |`  ( ( N  \  { K } )  X.  N ) )  =  ( ( K ( ( N minMatR1  R ) `  M ) K )  |`  ( ( N  \  { K } )  X.  N ) ) )
 
Theoremsmadiadetglem2 20478 Lemma 2 for smadiadetg 20479. (Contributed by AV, 14-Feb-2019.)
 |-  A  =  ( N Mat 
 R )   &    |-  B  =  (
 Base `  A )   &    |-  R  e.  CRing   &    |-  D  =  ( N maDet  R )   &    |-  E  =  ( ( N  \  { K } ) maDet  R )   &    |-  .x. 
 =  ( .r `  R )   =>    |-  ( ( M  e.  B  /\  K  e.  N  /\  S  e.  ( Base `  R ) )  ->  ( ( K ( M ( N matRRep  R ) S ) K )  |`  ( { K }  X.  N ) )  =  ( ( ( { K }  X.  N )  X.  { S }
 )  oF  .x.  ( ( K ( ( N minMatR1  R ) `  M ) K )  |`  ( { K }  X.  N ) ) ) )
 
Theoremsmadiadetg 20479 The determinant of a square matrix with one row replaced with 0's and an arbitrary element of the underlying ring at the diagonal position equals the ring element multiplied with the determinant of a submatrix of the square matrix obtained by removing the row and the column at the same index. (Contributed by AV, 14-Feb-2019.)
 |-  A  =  ( N Mat 
 R )   &    |-  B  =  (
 Base `  A )   &    |-  R  e.  CRing   &    |-  D  =  ( N maDet  R )   &    |-  E  =  ( ( N  \  { K } ) maDet  R )   &    |-  .x. 
 =  ( .r `  R )   =>    |-  ( ( M  e.  B  /\  K  e.  N  /\  S  e.  ( Base `  R ) )  ->  ( D `  ( K ( M ( N matRRep  R ) S ) K ) )  =  ( S  .x.  ( E `  ( K ( ( N subMat  R ) `  M ) K ) ) ) )
 
Theoremsmadiadetg0 20480 Lemma for smadiadetr 20481: version of smadiadetg 20479 with all hypotheses defining class variables removed, i.e. all class variables defined in the hypotheses replaced in the theorem by their definition. (Contributed by AV, 15-Feb-2019.)
 |-  R  e.  CRing   =>    |-  ( ( M  e.  ( Base `  ( N Mat  R ) )  /\  K  e.  N  /\  S  e.  ( Base `  R )
 )  ->  ( ( N maDet  R ) `  ( K ( M ( N matRRep  R ) S ) K ) )  =  ( S ( .r
 `  R ) ( ( ( N  \  { K } ) maDet  R ) `  ( K ( ( N subMat  R ) `  M ) K ) ) ) )
 
Theoremsmadiadetr 20481 The determinant of a square matrix with one row replaced with 0's and an arbitrary element of the underlying ring at the diagonal position equals the ring element multiplied with the determinant of a submatrix of the square matrix obtained by removing the row and the column at the same index. Closed form of smadiadetg 20479. Special case of the "Laplace expansion", see definition in [Lang] p. 515. (Contributed by AV, 15-Feb-2019.)
 |-  ( ( ( R  e.  CRing  /\  M  e.  ( Base `  ( N Mat  R ) ) )  /\  ( K  e.  N  /\  S  e.  ( Base `  R ) ) ) 
 ->  ( ( N maDet  R ) `  ( K ( M ( N matRRep  R ) S ) K ) )  =  ( S ( .r `  R ) ( ( ( N  \  { K } ) maDet  R ) `  ( K ( ( N subMat  R ) `  M ) K ) ) ) )
 
11.3.5  Inverse matrix
 
Theoreminvrvald 20482 If a matrix multiplied with a given matrix (from the left as well as from the right) results in the identity matrix, this matrix is the inverse (matrix) of the given matrix. (Contributed by Stefan O'Rear, 17-Jul-2018.)
 |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  .1.  =  ( 1r `  R )   &    |-  U  =  (Unit `  R )   &    |-  I  =  (
 invr `  R )   &    |-  ( ph  ->  R  e.  Ring )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   &    |-  ( ph  ->  ( X  .x.  Y )  =  .1.  )   &    |-  ( ph  ->  ( Y  .x.  X )  =  .1.  )   =>    |-  ( ph  ->  ( X  e.  U  /\  ( I `  X )  =  Y ) )
 
Theoremmatinv 20483 The inverse of a matrix is the adjunct of the matrix multiplied with the inverse of the determinant of the matrix if the determinant is a unit in the underlying ring. Proposition 4.16 in [Lang] p. 518. (Contributed by Stefan O'Rear, 17-Jul-2018.)
 |-  A  =  ( N Mat 
 R )   &    |-  J  =  ( N maAdju  R )   &    |-  D  =  ( N maDet  R )   &    |-  B  =  ( Base `  A )   &    |-  U  =  (Unit `  A )   &    |-  V  =  (Unit `  R )   &    |-  H  =  ( invr `  R )   &    |-  I  =  ( invr `  A )   &    |-  .xb  =  ( .s `  A )   =>    |-  ( ( R  e.  CRing  /\  M  e.  B  /\  ( D `  M )  e.  V )  ->  ( M  e.  U  /\  ( I `  M )  =  ( ( H `  ( D `  M ) )  .xb  ( J `  M ) ) ) )
 
Theoremmatunit 20484 A matrix is a unit in the ring of matrices iff its determinant is a unit in the underlying ring. (Contributed by Stefan O'Rear, 17-Jul-2018.)
 |-  A  =  ( N Mat 
 R )   &    |-  D  =  ( N maDet  R )   &    |-  B  =  ( Base `  A )   &    |-  U  =  (Unit `  A )   &    |-  V  =  (Unit `  R )   =>    |-  (
 ( R  e.  CRing  /\  M  e.  B ) 
 ->  ( M  e.  U  <->  ( D `  M )  e.  V ) )
 
11.3.6  Cramer's rule

In the following, Cramer's rule cramer 20497 is proven. According to Wikipedia "Cramer's rule", 21-Feb-2019, https://en.wikipedia.org/wiki/Cramer%27s_rule: "[Cramer's rule] ... expresses the [unique] solution [of a system of linear equations] in terms of the determinants of the (square) coefficient matrix and of matrices obtained from it by replacing one column by the column vector of right-hand sides of the equations."

The outline of the proof for systems of linear equations with coefficients from a commutative ring, according to the proof in Wikipedia (https://en.wikipedia.org/wiki/Cramer's_rule#A_short_proof), is as follows:

The system of linear equations  A  .X.  X  =  B to be solved shall be given by the N x N coefficient matrix  A and the N-dimensional vector  B. Let  ( A `  i ) be the matrix obtained by replacing the i-th column of the coefficient matrix  A by the right-hand side vector  B. Additionally, let  ( X `  i ) be the the matrix obtained by replacing the i-th column of the identity matrix by the solution vector  X, with 
X  =  ( x `
 i ). Finally, it is assumed that det 
A is a unit in the underlying ring.

With these definitions, it follows that  A  .X.  ( X `  i )  =  ( A `  i ) (cramerimplem2 20490), using matrix multiplication (mamuval 20192) and multiplication of a vector with a matrix (mulmarep1gsum2 20380). By using the multiplicativity of the determinant (mdetmul 20429) it follows that det  ( A `  i )  = det  ( A  .X.  ( X `  i ) )  = det 
A  .x. det  ( X `  i ) (cramerimplem3 20491).

Furthermore, it follows that det  ( X `  i
)  =  ( x `
 i ) (cramerimplem1 20489). To show this, a special case of the Laplace expansion is used (smadiadetg 20479).

From these equations and the cancellation law for division in a ring (dvrcan3 18692) it follows that  ( x `  i )  = det  ( X `  i )  = det  ( A `  i )  ./ det  A.

This is the right to left implication (cramerimp 20492, cramerlem1 20493, cramerlem2 20494) of Cramer's rule (cramer 20497). The left to right implication is shown by cramerlem3 20495, using the fact that a solution of the system of linear equations exists (slesolex 20488).

Notice that for the special case of 0-dimensional matrices/vectors only the left to right implication is valid (see cramer0 20496), because assuming the right-hand side of the implication (
( X  .x.  Z
)  =  Y),  Z could be anything (see mavmul0g 20359).

 
Theoremslesolvec 20485 Every solution of a system of linear equations represented by a matrix and a vector is a vector. (Contributed by AV, 10-Feb-2019.) (Revised by AV, 27-Feb-2019.)
 |-  A  =  ( N Mat 
 R )   &    |-  B  =  (
 Base `  A )   &    |-  V  =  ( ( Base `  R )  ^m  N )   &    |-  .x.  =  ( R maVecMul  <. N ,  N >. )   =>    |-  ( ( ( N  =/=  (/)  /\  R  e.  Ring
 )  /\  ( X  e.  B  /\  Y  e.  V ) )  ->  ( ( X  .x.  Z )  =  Y  ->  Z  e.  V ) )
 
Theoremslesolinv 20486 The solution of a system of linear equations represented by a matrix with a unit as determinant is the multiplication of the inverse of the matrix with the right-hand side vector. (Contributed by AV, 10-Feb-2019.) (Revised by AV, 28-Feb-2019.)
 |-  A  =  ( N Mat 
 R )   &    |-  B  =  (
 Base `  A )   &    |-  V  =  ( ( Base `  R )  ^m  N )   &    |-  .x.  =  ( R maVecMul  <. N ,  N >. )   &    |-  D  =  ( N maDet  R )   &    |-  I  =  ( invr `  A )   =>    |-  (
 ( ( N  =/=  (/)  /\  R  e.  CRing )  /\  ( X  e.  B  /\  Y  e.  V ) 
 /\  ( ( D `
  X )  e.  (Unit `  R )  /\  ( X  .x.  Z )  =  Y )
 )  ->  Z  =  ( ( I `  X )  .x.  Y ) )
 
Theoremslesolinvbi 20487 The solution of a system of linear equations represented by a matrix with a unit as determinant is the multiplication of the inverse of the matrix with the right-hand side vector. (Contributed by AV, 11-Feb-2019.) (Revised by AV, 28-Feb-2019.)
 |-  A  =  ( N Mat 
 R )   &    |-  B  =  (
 Base `  A )   &    |-  V  =  ( ( Base `  R )  ^m  N )   &    |-  .x.  =  ( R maVecMul  <. N ,  N >. )   &    |-  D  =  ( N maDet  R )   &    |-  I  =  ( invr `  A )   =>    |-  (
 ( ( N  =/=  (/)  /\  R  e.  CRing )  /\  ( X  e.  B  /\  Y  e.  V ) 
 /\  ( D `  X )  e.  (Unit `  R ) )  ->  ( ( X  .x.  Z )  =  Y  <->  Z  =  (
 ( I `  X )  .x.  Y ) ) )
 
Theoremslesolex 20488* Every system of linear equations represented by a matrix with a unit as determinant has a solution. (Contributed by AV, 11-Feb-2019.) (Revised by AV, 28-Feb-2019.)
 |-  A  =  ( N Mat 
 R )   &    |-  B  =  (
 Base `  A )   &    |-  V  =  ( ( Base `  R )  ^m  N )   &    |-  .x.  =  ( R maVecMul  <. N ,  N >. )   &    |-  D  =  ( N maDet  R )   =>    |-  ( ( ( N  =/=  (/)  /\  R  e.  CRing )  /\  ( X  e.  B  /\  Y  e.  V )  /\  ( D `  X )  e.  (Unit `  R ) )  ->  E. z  e.  V  ( X  .x.  z )  =  Y )
 
Theoremcramerimplem1 20489 Lemma 1 for cramerimp 20492: The determinant of the identity matrix with the ith column replaced by a (column) vector equals the ith component of the vector. (Contributed by AV, 15-Feb-2019.) (Revised by AV, 28-Feb-2019.)
 |-  A  =  ( N Mat 
 R )   &    |-  B  =  (
 Base `  A )   &    |-  V  =  ( ( Base `  R )  ^m  N )   &    |-  E  =  ( ( ( 1r
 `  A ) ( N matRepV  R ) Z ) `
  I )   &    |-  D  =  ( N maDet  R )   =>    |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  I  e.  N )  /\  Z  e.  V )  ->  ( D `  E )  =  ( Z `  I ) )
 
Theoremcramerimplem2 20490 Lemma 2 for cramerimp 20492: The matrix of a system of linear equations multiplied with the identity matrix with the ith column replaced by the solution vector of the system of linear equations equals the matrix of the system of linear equations with the ith column replaced by the right-hand side vector of the system of linear equations. (Contributed by AV, 19-Feb-2019.) (Revised by AV, 1-Mar-2019.)
 |-  A  =  ( N Mat 
 R )   &    |-  B  =  (
 Base `  A )   &    |-  V  =  ( ( Base `  R )  ^m  N )   &    |-  E  =  ( ( ( 1r
 `  A ) ( N matRepV  R ) Z ) `
  I )   &    |-  H  =  ( ( X ( N matRepV  R ) Y ) `
  I )   &    |-  .x.  =  ( R maVecMul  <. N ,  N >. )   &    |-  .X.  =  ( R maMul  <. N ,  N ,  N >. )   =>    |-  ( ( ( R  e.  CRing  /\  I  e.  N )  /\  ( X  e.  B  /\  Y  e.  V )  /\  ( X  .x.  Z )  =  Y )  ->  ( X  .X.  E )  =  H )
 
Theoremcramerimplem3 20491 Lemma 3 for cramerimp 20492: The determinant of the matrix of a system of linear equations multiplied with the determinant of the identity matrix with the ith column replaced by the solution vector of the system of linear equations equals the determinant of the matrix of the system of linear equations with the ith column replaced by the right-hand side vector of the system of linear equations. (Contributed by AV, 19-Feb-2019.) (Revised by AV, 1-Mar-2019.)
 |-  A  =  ( N Mat 
 R )   &    |-  B  =  (
 Base `  A )   &    |-  V  =  ( ( Base `  R )  ^m  N )   &    |-  E  =  ( ( ( 1r
 `  A ) ( N matRepV  R ) Z ) `
  I )   &    |-  H  =  ( ( X ( N matRepV  R ) Y ) `
  I )   &    |-  .x.  =  ( R maVecMul  <. N ,  N >. )   &    |-  D  =  ( N maDet  R )   &    |-  .(x)  =  ( .r `  R )   =>    |-  ( ( ( R  e.  CRing  /\  I  e.  N )  /\  ( X  e.  B  /\  Y  e.  V )  /\  ( X  .x.  Z )  =  Y )  ->  (
 ( D `  X )  .(x)  ( D `  E ) )  =  ( D `  H ) )
 
Theoremcramerimp 20492 One direction of Cramer's rule (according to Wikipedia "Cramer's rule", 21-Feb-2019, https://en.wikipedia.org/wiki/Cramer%27s_rule: "[Cramer's rule] ... expresses the solution [of a system of linear equations] in terms of the determinants of the (square) coefficient matrix and of matrices obtained from it by replacing one column by the column vector of right-hand sides of the equations."): The ith component of the solution vector of a system of linear equations equals the determinant of the matrix of the system of linear equations with the ith column replaced by the righthand side vector of the system of linear equations divided by the determinant of the matrix of the system of linear equations. (Contributed by AV, 19-Feb-2019.) (Revised by AV, 1-Mar-2019.)
 |-  A  =  ( N Mat 
 R )   &    |-  B  =  (
 Base `  A )   &    |-  V  =  ( ( Base `  R )  ^m  N )   &    |-  E  =  ( ( ( 1r
 `  A ) ( N matRepV  R ) Z ) `
  I )   &    |-  H  =  ( ( X ( N matRepV  R ) Y ) `
  I )   &    |-  .x.  =  ( R maVecMul  <. N ,  N >. )   &    |-  D  =  ( N maDet  R )   &    |-  ./  =  (/r `  R )   =>    |-  ( ( ( R  e.  CRing  /\  I  e.  N )  /\  ( X  e.  B  /\  Y  e.  V )  /\  (
 ( X  .x.  Z )  =  Y  /\  ( D `  X )  e.  (Unit `  R ) ) )  ->  ( Z `  I )  =  ( ( D `
  H )  ./  ( D `  X ) ) )
 
Theoremcramerlem1 20493* Lemma 1 for cramer 20497. (Contributed by AV, 21-Feb-2019.) (Revised by AV, 1-Mar-2019.)
 |-  A  =  ( N Mat 
 R )   &    |-  B  =  (
 Base `  A )   &    |-  V  =  ( ( Base `  R )  ^m  N )   &    |-  D  =  ( N maDet  R )   &    |-  .x. 
 =  ( R maVecMul  <. N ,  N >. )   &    |-  ./  =  (/r `  R )   =>    |-  ( ( R  e.  CRing  /\  ( X  e.  B  /\  Y  e.  V ) 
 /\  ( ( D `
  X )  e.  (Unit `  R )  /\  Z  e.  V  /\  ( X  .x.  Z )  =  Y ) ) 
 ->  Z  =  ( i  e.  N  |->  ( ( D `  ( ( X ( N matRepV  R ) Y ) `  i
 ) )  ./  ( D `  X ) ) ) )
 
Theoremcramerlem2 20494* Lemma 2 for cramer 20497. (Contributed by AV, 21-Feb-2019.) (Revised by AV, 1-Mar-2019.)
 |-  A  =  ( N Mat 
 R )   &    |-  B  =  (
 Base `  A )   &    |-  V  =  ( ( Base `  R )  ^m  N )   &    |-  D  =  ( N maDet  R )   &    |-  .x. 
 =  ( R maVecMul  <. N ,  N >. )   &    |-  ./  =  (/r `  R )   =>    |-  ( ( R  e.  CRing  /\  ( X  e.  B  /\  Y  e.  V ) 
 /\  ( D `  X )  e.  (Unit `  R ) )  ->  A. z  e.  V  ( ( X  .x.  z )  =  Y  ->  z  =  ( i  e.  N  |->  ( ( D `  ( ( X ( N matRepV  R ) Y ) `  i
 ) )  ./  ( D `  X ) ) ) ) )
 
Theoremcramerlem3 20495* Lemma 3 for cramer 20497. (Contributed by AV, 21-Feb-2019.) (Revised by AV, 1-Mar-2019.)
 |-  A  =  ( N Mat 
 R )   &    |-  B  =  (
 Base `  A )   &    |-  V  =  ( ( Base `  R )  ^m  N )   &    |-  D  =  ( N maDet  R )   &    |-  .x. 
 =  ( R maVecMul  <. N ,  N >. )   &    |-  ./  =  (/r `  R )   =>    |-  ( ( ( N  =/=  (/)  /\  R  e.  CRing
 )  /\  ( X  e.  B  /\  Y  e.  V )  /\  ( D `
  X )  e.  (Unit `  R )
 )  ->  ( Z  =  ( i  e.  N  |->  ( ( D `  ( ( X ( N matRepV  R ) Y ) `
  i ) ) 
 ./  ( D `  X ) ) ) 
 ->  ( X  .x.  Z )  =  Y )
 )
 
Theoremcramer0 20496* Special case of Cramer's rule for 0-dimensional matrices/vectors. (Contributed by AV, 28-Feb-2019.)
 |-  A  =  ( N Mat 
 R )   &    |-  B  =  (
 Base `  A )   &    |-  V  =  ( ( Base `  R )  ^m  N )   &    |-  D  =  ( N maDet  R )   &    |-  .x. 
 =  ( R maVecMul  <. N ,  N >. )   &    |-  ./  =  (/r `  R )   =>    |-  ( ( ( N  =  (/)  /\  R  e.  CRing
 )  /\  ( X  e.  B  /\  Y  e.  V )  /\  ( D `
  X )  e.  (Unit `  R )
 )  ->  ( Z  =  ( i  e.  N  |->  ( ( D `  ( ( X ( N matRepV  R ) Y ) `
  i ) ) 
 ./  ( D `  X ) ) ) 
 ->  ( X  .x.  Z )  =  Y )
 )
 
Theoremcramer 20497* Cramer's rule. According to Wikipedia "Cramer's rule", 21-Feb-2019, https://en.wikipedia.org/wiki/Cramer%27s_rule: "[Cramer's rule] ... expresses the [unique] solution [of a system of linear equations] in terms of the determinants of the (square) coefficient matrix and of matrices obtained from it by replacing one column by the column vector of right-hand sides of the equations." If it is assumed that a (unique) solution exists, it can be obtained by Cramer's rule (see also cramerimp 20492). On the other hand, if a vector can be constructed by Cramer's rule, it is a solution of the system of linear equations, so at least one solution exists. The uniqueness is ensured by considering only systems of linear equations whose matrix has a unit (of the underlying ring) as determinant, see matunit 20484 or slesolinv 20486. For fields as underlying rings, this requirement is equivalent with the determinant not being 0. Theorem 4.4 in [Lang] p. 513. This is Metamath 100 proof #97. (Contributed by Alexander van der Vekens, 21-Feb-2019.) (Revised by Alexander van der Vekens, 1-Mar-2019.)
 |-  A  =  ( N Mat 
 R )   &    |-  B  =  (
 Base `  A )   &    |-  V  =  ( ( Base `  R )  ^m  N )   &    |-  D  =  ( N maDet  R )   &    |-  .x. 
 =  ( R maVecMul  <. N ,  N >. )   &    |-  ./  =  (/r `  R )   =>    |-  ( ( ( R  e.  CRing  /\  N  =/=  (/) )  /\  ( X  e.  B  /\  Y  e.  V )  /\  ( D `  X )  e.  (Unit `  R )
 )  ->  ( Z  =  ( i  e.  N  |->  ( ( D `  ( ( X ( N matRepV  R ) Y ) `
  i ) ) 
 ./  ( D `  X ) ) )  <-> 
 ( X  .x.  Z )  =  Y )
 )
 
11.4  Polynomial matrices

A polynomial matrix or matrix of polynomials is a matrix whose elements are univariate (or multivariate) polynomials. See Wikipedia "Polynomial matrix" https://en.wikipedia.org/wiki/Polynomial_matrix (18-Nov-2019). In this section, only square matrices whose elements are univariate polynomials are considered. Usually, the ring of such matrices, the ring of n x n matrices over the polynomial ring over a ring  R, is denoted by M(n, R[t]). The elements of this ring are called "polynomial matrices (over the ring  R)" in the following. In Metamath notation, this ring is defined by  ( N Mat  (Poly1 `  R ) ), usually represented by the class variable  C (or  Y, if  C is already occupied):  C  =  ( N Mat  P
) with  P  =  (Poly1 `  R ).

 
11.4.1  Basic properties
 
Theorempmatring 20498 The set of polynomial matrices over a ring is a ring. (Contributed by AV, 6-Nov-2019.)
 |-  P  =  (Poly1 `  R )   &    |-  C  =  ( N Mat 
 P )   =>    |-  ( ( N  e.  Fin  /\  R  e.  Ring )  ->  C  e.  Ring )
 
Theorempmatlmod 20499 The set of polynomial matrices over a ring is a left module. (Contributed by AV, 6-Nov-2019.)
 |-  P  =  (Poly1 `  R )   &    |-  C  =  ( N Mat 
 P )   =>    |-  ( ( N  e.  Fin  /\  R  e.  Ring )  ->  C  e.  LMod )
 
Theorempmat0op 20500* The zero polynomial matrix over a ring represented as operation. (Contributed by AV, 16-Nov-2019.)
 |-  P  =  (Poly1 `  R )   &    |-  C  =  ( N Mat 
 P )   &    |-  .0.  =  ( 0g `  P )   =>    |-  ( ( N  e.  Fin  /\  R  e.  Ring )  ->  ( 0g `  C )  =  ( i  e.  N ,  j  e.  N  |->  .0.  ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42551
  Copyright terms: Public domain < Previous  Next >