MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgcgrcoml Structured version   Visualization version   Unicode version

Theorem tgcgrcoml 25374
Description: Congruence commutes on the LHS. Variant of Theorem 2.5 of [Schwabhauser] p. 27, but in a convenient form for a common case. (Contributed by David A. Wheeler, 29-Jun-2020.)
Hypotheses
Ref Expression
tkgeom.p  |-  P  =  ( Base `  G
)
tkgeom.d  |-  .-  =  ( dist `  G )
tkgeom.i  |-  I  =  (Itv `  G )
tkgeom.g  |-  ( ph  ->  G  e. TarskiG )
tgcgrcomr.a  |-  ( ph  ->  A  e.  P )
tgcgrcomr.b  |-  ( ph  ->  B  e.  P )
tgcgrcomr.c  |-  ( ph  ->  C  e.  P )
tgcgrcomr.d  |-  ( ph  ->  D  e.  P )
tgcgrcomr.6  |-  ( ph  ->  ( A  .-  B
)  =  ( C 
.-  D ) )
Assertion
Ref Expression
tgcgrcoml  |-  ( ph  ->  ( B  .-  A
)  =  ( C 
.-  D ) )

Proof of Theorem tgcgrcoml
StepHypRef Expression
1 tkgeom.p . . 3  |-  P  =  ( Base `  G
)
2 tkgeom.d . . 3  |-  .-  =  ( dist `  G )
3 tkgeom.i . . 3  |-  I  =  (Itv `  G )
4 tkgeom.g . . 3  |-  ( ph  ->  G  e. TarskiG )
5 tgcgrcomr.a . . 3  |-  ( ph  ->  A  e.  P )
6 tgcgrcomr.b . . 3  |-  ( ph  ->  B  e.  P )
71, 2, 3, 4, 5, 6axtgcgrrflx 25361 . 2  |-  ( ph  ->  ( A  .-  B
)  =  ( B 
.-  A ) )
8 tgcgrcomr.6 . 2  |-  ( ph  ->  ( A  .-  B
)  =  ( C 
.-  D ) )
97, 8eqtr3d 2658 1  |-  ( ph  ->  ( B  .-  A
)  =  ( C 
.-  D ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   ` cfv 5888  (class class class)co 6650   Basecbs 15857   distcds 15950  TarskiGcstrkg 25329  Itvcitv 25335
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-ov 6653  df-trkgc 25347  df-trkg 25352
This theorem is referenced by:  hlcgrex  25511  dfcgra2  25721
  Copyright terms: Public domain W3C validator