Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  topdifinfeq Structured version   Visualization version   Unicode version

Theorem topdifinfeq 33198
Description: Two different ways of defining the collection from Exercise 3 of [Munkres] p. 83. (Contributed by ML, 18-Jul-2020.)
Assertion
Ref Expression
topdifinfeq  |-  { x  e.  ~P A  |  ( -.  ( A  \  x )  e.  Fin  \/  ( ( A  \  x )  =  (/)  \/  ( A  \  x
)  =  A ) ) }  =  {
x  e.  ~P A  |  ( -.  ( A  \  x )  e. 
Fin  \/  ( x  =  (/)  \/  x  =  A ) ) }
Distinct variable group:    x, A

Proof of Theorem topdifinfeq
StepHypRef Expression
1 disj3 4021 . . . . . . . 8  |-  ( ( A  i^i  x )  =  (/)  <->  A  =  ( A  \  x ) )
2 eqcom 2629 . . . . . . . 8  |-  ( A  =  ( A  \  x )  <->  ( A  \  x )  =  A )
31, 2bitri 264 . . . . . . 7  |-  ( ( A  i^i  x )  =  (/)  <->  ( A  \  x )  =  A )
4 selpw 4165 . . . . . . . . 9  |-  ( x  e.  ~P A  <->  x  C_  A
)
5 sseqin2 3817 . . . . . . . . 9  |-  ( x 
C_  A  <->  ( A  i^i  x )  =  x )
64, 5bitri 264 . . . . . . . 8  |-  ( x  e.  ~P A  <->  ( A  i^i  x )  =  x )
7 eqeq1 2626 . . . . . . . 8  |-  ( ( A  i^i  x )  =  x  ->  (
( A  i^i  x
)  =  (/)  <->  x  =  (/) ) )
86, 7sylbi 207 . . . . . . 7  |-  ( x  e.  ~P A  -> 
( ( A  i^i  x )  =  (/)  <->  x  =  (/) ) )
93, 8syl5rbbr 275 . . . . . 6  |-  ( x  e.  ~P A  -> 
( x  =  (/)  <->  ( A  \  x )  =  A ) )
10 eqss 3618 . . . . . . . 8  |-  ( x  =  A  <->  ( x  C_  A  /\  A  C_  x ) )
11 ssdif0 3942 . . . . . . . . . 10  |-  ( A 
C_  x  <->  ( A  \  x )  =  (/) )
1211bicomi 214 . . . . . . . . 9  |-  ( ( A  \  x )  =  (/)  <->  A  C_  x )
134, 12anbi12i 733 . . . . . . . 8  |-  ( ( x  e.  ~P A  /\  ( A  \  x
)  =  (/) )  <->  ( x  C_  A  /\  A  C_  x ) )
1410, 13bitr4i 267 . . . . . . 7  |-  ( x  =  A  <->  ( x  e.  ~P A  /\  ( A  \  x )  =  (/) ) )
1514baib 944 . . . . . 6  |-  ( x  e.  ~P A  -> 
( x  =  A  <-> 
( A  \  x
)  =  (/) ) )
169, 15orbi12d 746 . . . . 5  |-  ( x  e.  ~P A  -> 
( ( x  =  (/)  \/  x  =  A )  <->  ( ( A 
\  x )  =  A  \/  ( A 
\  x )  =  (/) ) ) )
17 orcom 402 . . . . 5  |-  ( ( ( A  \  x
)  =  A  \/  ( A  \  x
)  =  (/) )  <->  ( ( A  \  x )  =  (/)  \/  ( A  \  x )  =  A ) )
1816, 17syl6bb 276 . . . 4  |-  ( x  e.  ~P A  -> 
( ( x  =  (/)  \/  x  =  A )  <->  ( ( A 
\  x )  =  (/)  \/  ( A  \  x )  =  A ) ) )
1918orbi2d 738 . . 3  |-  ( x  e.  ~P A  -> 
( ( -.  ( A  \  x )  e. 
Fin  \/  ( x  =  (/)  \/  x  =  A ) )  <->  ( -.  ( A  \  x
)  e.  Fin  \/  ( ( A  \  x )  =  (/)  \/  ( A  \  x
)  =  A ) ) ) )
2019bicomd 213 . 2  |-  ( x  e.  ~P A  -> 
( ( -.  ( A  \  x )  e. 
Fin  \/  ( ( A  \  x )  =  (/)  \/  ( A  \  x )  =  A ) )  <->  ( -.  ( A  \  x
)  e.  Fin  \/  ( x  =  (/)  \/  x  =  A ) ) ) )
2120rabbiia 3185 1  |-  { x  e.  ~P A  |  ( -.  ( A  \  x )  e.  Fin  \/  ( ( A  \  x )  =  (/)  \/  ( A  \  x
)  =  A ) ) }  =  {
x  e.  ~P A  |  ( -.  ( A  \  x )  e. 
Fin  \/  ( x  =  (/)  \/  x  =  A ) ) }
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   {crab 2916    \ cdif 3571    i^i cin 3573    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   Fincfn 7955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rab 2921  df-v 3202  df-dif 3577  df-in 3581  df-ss 3588  df-nul 3916  df-pw 4160
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator