![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl5rbbr | Structured version Visualization version Unicode version |
Description: A syllogism inference from two biconditionals. (Contributed by NM, 25-Nov-1994.) |
Ref | Expression |
---|---|
syl5rbbr.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
syl5rbbr.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
syl5rbbr |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl5rbbr.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | bicomi 214 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
3 | syl5rbbr.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | syl5rbb 273 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 |
This theorem is referenced by: sbco3 2417 necon2bbid 2837 fressnfv 6427 eluniima 6508 dfac2 8953 alephval2 9394 adderpqlem 9776 1idpr 9851 leloe 10124 negeq0 10335 muleqadd 10671 addltmul 11268 xrleloe 11977 fzrev 12403 mod0 12675 modirr 12741 cjne0 13903 lenegsq 14060 fsumsplit 14471 sumsplit 14499 dvdsabseq 15035 xpsfrnel 16223 isacs2 16314 acsfn 16320 comfeq 16366 sgrp2nmndlem3 17412 resscntz 17764 gexdvds 17999 hauscmplem 21209 hausdiag 21448 utop3cls 22055 ltgov 25492 ax5seglem4 25812 mdsl2i 29181 addeq0 29510 pl1cn 30001 topdifinfeq 33198 finxpreclem6 33233 ftc1anclem5 33489 fdc1 33542 relcnveq 34093 relcnveq2 34094 lcvexchlem1 34321 lkreqN 34457 glbconxN 34664 islpln5 34821 islvol5 34865 cdlemefrs29bpre0 35684 cdlemg17h 35956 cdlemg33b 35995 brnonrel 37895 frege92 38249 e2ebind 38779 stoweidlem28 40245 |
Copyright terms: Public domain | W3C validator |