MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpres Structured version   Visualization version   Unicode version

Theorem tpres 6466
Description: An unordered triple of ordered pairs restricted to all but one first components of the pairs is an unordered pair of ordered pairs. (Contributed by AV, 14-Mar-2020.)
Hypotheses
Ref Expression
tpres.t  |-  ( ph  ->  T  =  { <. A ,  D >. ,  <. B ,  E >. ,  <. C ,  F >. } )
tpres.b  |-  ( ph  ->  B  e.  V )
tpres.c  |-  ( ph  ->  C  e.  V )
tpres.e  |-  ( ph  ->  E  e.  V )
tpres.f  |-  ( ph  ->  F  e.  V )
tpres.1  |-  ( ph  ->  B  =/=  A )
tpres.2  |-  ( ph  ->  C  =/=  A )
Assertion
Ref Expression
tpres  |-  ( ph  ->  ( T  |`  ( _V  \  { A }
) )  =  { <. B ,  E >. , 
<. C ,  F >. } )

Proof of Theorem tpres
Dummy variables  a 
b  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-res 5126 . 2  |-  ( T  |`  ( _V  \  { A } ) )  =  ( T  i^i  (
( _V  \  { A } )  X.  _V ) )
2 elin 3796 . . . 4  |-  ( x  e.  ( T  i^i  ( ( _V  \  { A } )  X. 
_V ) )  <->  ( x  e.  T  /\  x  e.  ( ( _V  \  { A } )  X. 
_V ) ) )
3 elxp 5131 . . . . . 6  |-  ( x  e.  ( ( _V 
\  { A }
)  X.  _V )  <->  E. a E. b ( x  =  <. a ,  b >.  /\  (
a  e.  ( _V 
\  { A }
)  /\  b  e.  _V ) ) )
43anbi2i 730 . . . . 5  |-  ( ( x  e.  T  /\  x  e.  ( ( _V  \  { A }
)  X.  _V )
)  <->  ( x  e.  T  /\  E. a E. b ( x  = 
<. a ,  b >.  /\  ( a  e.  ( _V  \  { A } )  /\  b  e.  _V ) ) ) )
5 tpres.t . . . . . . . . 9  |-  ( ph  ->  T  =  { <. A ,  D >. ,  <. B ,  E >. ,  <. C ,  F >. } )
65eleq2d 2687 . . . . . . . 8  |-  ( ph  ->  ( x  e.  T  <->  x  e.  { <. A ,  D >. ,  <. B ,  E >. ,  <. C ,  F >. } ) )
7 vex 3203 . . . . . . . . . . . . 13  |-  x  e. 
_V
87eltp 4230 . . . . . . . . . . . 12  |-  ( x  e.  { <. A ,  D >. ,  <. B ,  E >. ,  <. C ,  F >. }  <->  ( x  =  <. A ,  D >.  \/  x  =  <. B ,  E >.  \/  x  =  <. C ,  F >. ) )
9 eldifsn 4317 . . . . . . . . . . . . . . . . . . . 20  |-  ( a  e.  ( _V  \  { A } )  <->  ( a  e.  _V  /\  a  =/= 
A ) )
10 eqeq1 2626 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( x  =  <. a ,  b
>.  ->  ( x  = 
<. A ,  D >.  <->  <. a ,  b >.  =  <. A ,  D >. )
)
1110adantl 482 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( a  =/=  A  /\  x  =  <. a ,  b >. )  ->  (
x  =  <. A ,  D >. 
<-> 
<. a ,  b >.  =  <. A ,  D >. ) )
12 vex 3203 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  a  e. 
_V
13 vex 3203 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  b  e. 
_V
1412, 13opth 4945 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( <.
a ,  b >.  =  <. A ,  D >.  <-> 
( a  =  A  /\  b  =  D ) )
15 eqneqall 2805 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( a  =  A  ->  (
a  =/=  A  -> 
( b  =  D  ->  ( ph  ->  ( x  =  <. B ,  E >.  \/  x  = 
<. C ,  F >. ) ) ) ) )
1615com12 32 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( a  =/=  A  ->  (
a  =  A  -> 
( b  =  D  ->  ( ph  ->  ( x  =  <. B ,  E >.  \/  x  = 
<. C ,  F >. ) ) ) ) )
1716impd 447 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( a  =/=  A  ->  (
( a  =  A  /\  b  =  D )  ->  ( ph  ->  ( x  =  <. B ,  E >.  \/  x  =  <. C ,  F >. ) ) ) )
1814, 17syl5bi 232 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( a  =/=  A  ->  ( <. a ,  b >.  =  <. A ,  D >.  ->  ( ph  ->  ( x  =  <. B ,  E >.  \/  x  = 
<. C ,  F >. ) ) ) )
1918adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( a  =/=  A  /\  x  =  <. a ,  b >. )  ->  ( <. a ,  b >.  =  <. A ,  D >.  ->  ( ph  ->  ( x  =  <. B ,  E >.  \/  x  = 
<. C ,  F >. ) ) ) )
2011, 19sylbid 230 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( a  =/=  A  /\  x  =  <. a ,  b >. )  ->  (
x  =  <. A ,  D >.  ->  ( ph  ->  ( x  =  <. B ,  E >.  \/  x  =  <. C ,  F >. ) ) ) )
2120impd 447 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( a  =/=  A  /\  x  =  <. a ,  b >. )  ->  (
( x  =  <. A ,  D >.  /\  ph )  ->  ( x  = 
<. B ,  E >.  \/  x  =  <. C ,  F >. ) ) )
2221ex 450 . . . . . . . . . . . . . . . . . . . . 21  |-  ( a  =/=  A  ->  (
x  =  <. a ,  b >.  ->  (
( x  =  <. A ,  D >.  /\  ph )  ->  ( x  = 
<. B ,  E >.  \/  x  =  <. C ,  F >. ) ) ) )
2322adantl 482 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( a  e.  _V  /\  a  =/=  A )  -> 
( x  =  <. a ,  b >.  ->  (
( x  =  <. A ,  D >.  /\  ph )  ->  ( x  = 
<. B ,  E >.  \/  x  =  <. C ,  F >. ) ) ) )
249, 23sylbi 207 . . . . . . . . . . . . . . . . . . 19  |-  ( a  e.  ( _V  \  { A } )  -> 
( x  =  <. a ,  b >.  ->  (
( x  =  <. A ,  D >.  /\  ph )  ->  ( x  = 
<. B ,  E >.  \/  x  =  <. C ,  F >. ) ) ) )
2524adantr 481 . . . . . . . . . . . . . . . . . 18  |-  ( ( a  e.  ( _V 
\  { A }
)  /\  b  e.  _V )  ->  ( x  =  <. a ,  b
>.  ->  ( ( x  =  <. A ,  D >.  /\  ph )  -> 
( x  =  <. B ,  E >.  \/  x  =  <. C ,  F >. ) ) ) )
2625impcom 446 . . . . . . . . . . . . . . . . 17  |-  ( ( x  =  <. a ,  b >.  /\  (
a  e.  ( _V 
\  { A }
)  /\  b  e.  _V ) )  ->  (
( x  =  <. A ,  D >.  /\  ph )  ->  ( x  = 
<. B ,  E >.  \/  x  =  <. C ,  F >. ) ) )
2726com12 32 . . . . . . . . . . . . . . . 16  |-  ( ( x  =  <. A ,  D >.  /\  ph )  -> 
( ( x  = 
<. a ,  b >.  /\  ( a  e.  ( _V  \  { A } )  /\  b  e.  _V ) )  -> 
( x  =  <. B ,  E >.  \/  x  =  <. C ,  F >. ) ) )
2827exlimdvv 1862 . . . . . . . . . . . . . . 15  |-  ( ( x  =  <. A ,  D >.  /\  ph )  -> 
( E. a E. b ( x  = 
<. a ,  b >.  /\  ( a  e.  ( _V  \  { A } )  /\  b  e.  _V ) )  -> 
( x  =  <. B ,  E >.  \/  x  =  <. C ,  F >. ) ) )
2928ex 450 . . . . . . . . . . . . . 14  |-  ( x  =  <. A ,  D >.  ->  ( ph  ->  ( E. a E. b
( x  =  <. a ,  b >.  /\  (
a  e.  ( _V 
\  { A }
)  /\  b  e.  _V ) )  ->  (
x  =  <. B ,  E >.  \/  x  = 
<. C ,  F >. ) ) ) )
3029impd 447 . . . . . . . . . . . . 13  |-  ( x  =  <. A ,  D >.  ->  ( ( ph  /\ 
E. a E. b
( x  =  <. a ,  b >.  /\  (
a  e.  ( _V 
\  { A }
)  /\  b  e.  _V ) ) )  -> 
( x  =  <. B ,  E >.  \/  x  =  <. C ,  F >. ) ) )
31 orc 400 . . . . . . . . . . . . . 14  |-  ( x  =  <. B ,  E >.  ->  ( x  = 
<. B ,  E >.  \/  x  =  <. C ,  F >. ) )
3231a1d 25 . . . . . . . . . . . . 13  |-  ( x  =  <. B ,  E >.  ->  ( ( ph  /\ 
E. a E. b
( x  =  <. a ,  b >.  /\  (
a  e.  ( _V 
\  { A }
)  /\  b  e.  _V ) ) )  -> 
( x  =  <. B ,  E >.  \/  x  =  <. C ,  F >. ) ) )
33 olc 399 . . . . . . . . . . . . . 14  |-  ( x  =  <. C ,  F >.  ->  ( x  = 
<. B ,  E >.  \/  x  =  <. C ,  F >. ) )
3433a1d 25 . . . . . . . . . . . . 13  |-  ( x  =  <. C ,  F >.  ->  ( ( ph  /\ 
E. a E. b
( x  =  <. a ,  b >.  /\  (
a  e.  ( _V 
\  { A }
)  /\  b  e.  _V ) ) )  -> 
( x  =  <. B ,  E >.  \/  x  =  <. C ,  F >. ) ) )
3530, 32, 343jaoi 1391 . . . . . . . . . . . 12  |-  ( ( x  =  <. A ,  D >.  \/  x  = 
<. B ,  E >.  \/  x  =  <. C ,  F >. )  ->  (
( ph  /\  E. a E. b ( x  = 
<. a ,  b >.  /\  ( a  e.  ( _V  \  { A } )  /\  b  e.  _V ) ) )  ->  ( x  = 
<. B ,  E >.  \/  x  =  <. C ,  F >. ) ) )
368, 35sylbi 207 . . . . . . . . . . 11  |-  ( x  e.  { <. A ,  D >. ,  <. B ,  E >. ,  <. C ,  F >. }  ->  (
( ph  /\  E. a E. b ( x  = 
<. a ,  b >.  /\  ( a  e.  ( _V  \  { A } )  /\  b  e.  _V ) ) )  ->  ( x  = 
<. B ,  E >.  \/  x  =  <. C ,  F >. ) ) )
377elpr 4198 . . . . . . . . . . 11  |-  ( x  e.  { <. B ,  E >. ,  <. C ,  F >. }  <->  ( x  =  <. B ,  E >.  \/  x  =  <. C ,  F >. )
)
3836, 37syl6ibr 242 . . . . . . . . . 10  |-  ( x  e.  { <. A ,  D >. ,  <. B ,  E >. ,  <. C ,  F >. }  ->  (
( ph  /\  E. a E. b ( x  = 
<. a ,  b >.  /\  ( a  e.  ( _V  \  { A } )  /\  b  e.  _V ) ) )  ->  x  e.  { <. B ,  E >. , 
<. C ,  F >. } ) )
3938expd 452 . . . . . . . . 9  |-  ( x  e.  { <. A ,  D >. ,  <. B ,  E >. ,  <. C ,  F >. }  ->  ( ph  ->  ( E. a E. b ( x  = 
<. a ,  b >.  /\  ( a  e.  ( _V  \  { A } )  /\  b  e.  _V ) )  ->  x  e.  { <. B ,  E >. ,  <. C ,  F >. } ) ) )
4039com12 32 . . . . . . . 8  |-  ( ph  ->  ( x  e.  { <. A ,  D >. , 
<. B ,  E >. , 
<. C ,  F >. }  ->  ( E. a E. b ( x  = 
<. a ,  b >.  /\  ( a  e.  ( _V  \  { A } )  /\  b  e.  _V ) )  ->  x  e.  { <. B ,  E >. ,  <. C ,  F >. } ) ) )
416, 40sylbid 230 . . . . . . 7  |-  ( ph  ->  ( x  e.  T  ->  ( E. a E. b ( x  = 
<. a ,  b >.  /\  ( a  e.  ( _V  \  { A } )  /\  b  e.  _V ) )  ->  x  e.  { <. B ,  E >. ,  <. C ,  F >. } ) ) )
4241impd 447 . . . . . 6  |-  ( ph  ->  ( ( x  e.  T  /\  E. a E. b ( x  = 
<. a ,  b >.  /\  ( a  e.  ( _V  \  { A } )  /\  b  e.  _V ) ) )  ->  x  e.  { <. B ,  E >. , 
<. C ,  F >. } ) )
43 3mix2 1231 . . . . . . . . . . . . 13  |-  ( x  =  <. B ,  E >.  ->  ( x  = 
<. A ,  D >.  \/  x  =  <. B ,  E >.  \/  x  = 
<. C ,  F >. ) )
44 3mix3 1232 . . . . . . . . . . . . 13  |-  ( x  =  <. C ,  F >.  ->  ( x  = 
<. A ,  D >.  \/  x  =  <. B ,  E >.  \/  x  = 
<. C ,  F >. ) )
4543, 44jaoi 394 . . . . . . . . . . . 12  |-  ( ( x  =  <. B ,  E >.  \/  x  = 
<. C ,  F >. )  ->  ( x  = 
<. A ,  D >.  \/  x  =  <. B ,  E >.  \/  x  = 
<. C ,  F >. ) )
4645adantr 481 . . . . . . . . . . 11  |-  ( ( ( x  =  <. B ,  E >.  \/  x  =  <. C ,  F >. )  /\  ph )  ->  ( x  =  <. A ,  D >.  \/  x  =  <. B ,  E >.  \/  x  =  <. C ,  F >. )
)
476, 8syl6bb 276 . . . . . . . . . . . 12  |-  ( ph  ->  ( x  e.  T  <->  ( x  =  <. A ,  D >.  \/  x  = 
<. B ,  E >.  \/  x  =  <. C ,  F >. ) ) )
4847adantl 482 . . . . . . . . . . 11  |-  ( ( ( x  =  <. B ,  E >.  \/  x  =  <. C ,  F >. )  /\  ph )  ->  ( x  e.  T  <->  ( x  =  <. A ,  D >.  \/  x  = 
<. B ,  E >.  \/  x  =  <. C ,  F >. ) ) )
4946, 48mpbird 247 . . . . . . . . . 10  |-  ( ( ( x  =  <. B ,  E >.  \/  x  =  <. C ,  F >. )  /\  ph )  ->  x  e.  T )
50 tpres.b . . . . . . . . . . . . . . . 16  |-  ( ph  ->  B  e.  V )
51 elex 3212 . . . . . . . . . . . . . . . 16  |-  ( B  e.  V  ->  B  e.  _V )
5250, 51syl 17 . . . . . . . . . . . . . . 15  |-  ( ph  ->  B  e.  _V )
53 tpres.1 . . . . . . . . . . . . . . 15  |-  ( ph  ->  B  =/=  A )
54 tpres.e . . . . . . . . . . . . . . . 16  |-  ( ph  ->  E  e.  V )
55 elex 3212 . . . . . . . . . . . . . . . 16  |-  ( E  e.  V  ->  E  e.  _V )
5654, 55syl 17 . . . . . . . . . . . . . . 15  |-  ( ph  ->  E  e.  _V )
5752, 53, 56jca31 557 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( B  e. 
_V  /\  B  =/=  A )  /\  E  e. 
_V ) )
5857anim2i 593 . . . . . . . . . . . . 13  |-  ( ( x  =  <. B ,  E >.  /\  ph )  -> 
( x  =  <. B ,  E >.  /\  (
( B  e.  _V  /\  B  =/=  A )  /\  E  e.  _V ) ) )
59 opeq12 4404 . . . . . . . . . . . . . . . . . 18  |-  ( ( a  =  B  /\  b  =  E )  -> 
<. a ,  b >.  =  <. B ,  E >. )
6059eqeq2d 2632 . . . . . . . . . . . . . . . . 17  |-  ( ( a  =  B  /\  b  =  E )  ->  ( x  =  <. a ,  b >.  <->  x  =  <. B ,  E >. ) )
61 eleq1 2689 . . . . . . . . . . . . . . . . . . 19  |-  ( a  =  B  ->  (
a  e.  _V  <->  B  e.  _V ) )
62 neeq1 2856 . . . . . . . . . . . . . . . . . . 19  |-  ( a  =  B  ->  (
a  =/=  A  <->  B  =/=  A ) )
6361, 62anbi12d 747 . . . . . . . . . . . . . . . . . 18  |-  ( a  =  B  ->  (
( a  e.  _V  /\  a  =/=  A )  <-> 
( B  e.  _V  /\  B  =/=  A ) ) )
64 eleq1 2689 . . . . . . . . . . . . . . . . . 18  |-  ( b  =  E  ->  (
b  e.  _V  <->  E  e.  _V ) )
6563, 64bi2anan9 917 . . . . . . . . . . . . . . . . 17  |-  ( ( a  =  B  /\  b  =  E )  ->  ( ( ( a  e.  _V  /\  a  =/=  A )  /\  b  e.  _V )  <->  ( ( B  e.  _V  /\  B  =/=  A )  /\  E  e.  _V ) ) )
6660, 65anbi12d 747 . . . . . . . . . . . . . . . 16  |-  ( ( a  =  B  /\  b  =  E )  ->  ( ( x  = 
<. a ,  b >.  /\  ( ( a  e. 
_V  /\  a  =/=  A )  /\  b  e. 
_V ) )  <->  ( x  =  <. B ,  E >.  /\  ( ( B  e.  _V  /\  B  =/=  A )  /\  E  e.  _V ) ) ) )
6766spc2egv 3295 . . . . . . . . . . . . . . 15  |-  ( ( B  e.  V  /\  E  e.  V )  ->  ( ( x  = 
<. B ,  E >.  /\  ( ( B  e. 
_V  /\  B  =/=  A )  /\  E  e. 
_V ) )  ->  E. a E. b ( x  =  <. a ,  b >.  /\  (
( a  e.  _V  /\  a  =/=  A )  /\  b  e.  _V ) ) ) )
6850, 54, 67syl2anc 693 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( x  = 
<. B ,  E >.  /\  ( ( B  e. 
_V  /\  B  =/=  A )  /\  E  e. 
_V ) )  ->  E. a E. b ( x  =  <. a ,  b >.  /\  (
( a  e.  _V  /\  a  =/=  A )  /\  b  e.  _V ) ) ) )
6968adantl 482 . . . . . . . . . . . . 13  |-  ( ( x  =  <. B ,  E >.  /\  ph )  -> 
( ( x  = 
<. B ,  E >.  /\  ( ( B  e. 
_V  /\  B  =/=  A )  /\  E  e. 
_V ) )  ->  E. a E. b ( x  =  <. a ,  b >.  /\  (
( a  e.  _V  /\  a  =/=  A )  /\  b  e.  _V ) ) ) )
7058, 69mpd 15 . . . . . . . . . . . 12  |-  ( ( x  =  <. B ,  E >.  /\  ph )  ->  E. a E. b ( x  =  <. a ,  b >.  /\  (
( a  e.  _V  /\  a  =/=  A )  /\  b  e.  _V ) ) )
71 tpres.c . . . . . . . . . . . . . . . 16  |-  ( ph  ->  C  e.  V )
72 elex 3212 . . . . . . . . . . . . . . . 16  |-  ( C  e.  V  ->  C  e.  _V )
7371, 72syl 17 . . . . . . . . . . . . . . 15  |-  ( ph  ->  C  e.  _V )
74 tpres.2 . . . . . . . . . . . . . . 15  |-  ( ph  ->  C  =/=  A )
75 tpres.f . . . . . . . . . . . . . . . 16  |-  ( ph  ->  F  e.  V )
76 elex 3212 . . . . . . . . . . . . . . . 16  |-  ( F  e.  V  ->  F  e.  _V )
7775, 76syl 17 . . . . . . . . . . . . . . 15  |-  ( ph  ->  F  e.  _V )
7873, 74, 77jca31 557 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( C  e. 
_V  /\  C  =/=  A )  /\  F  e. 
_V ) )
7978anim2i 593 . . . . . . . . . . . . 13  |-  ( ( x  =  <. C ,  F >.  /\  ph )  -> 
( x  =  <. C ,  F >.  /\  (
( C  e.  _V  /\  C  =/=  A )  /\  F  e.  _V ) ) )
80 opeq12 4404 . . . . . . . . . . . . . . . . . 18  |-  ( ( a  =  C  /\  b  =  F )  -> 
<. a ,  b >.  =  <. C ,  F >. )
8180eqeq2d 2632 . . . . . . . . . . . . . . . . 17  |-  ( ( a  =  C  /\  b  =  F )  ->  ( x  =  <. a ,  b >.  <->  x  =  <. C ,  F >. ) )
82 eleq1 2689 . . . . . . . . . . . . . . . . . . 19  |-  ( a  =  C  ->  (
a  e.  _V  <->  C  e.  _V ) )
83 neeq1 2856 . . . . . . . . . . . . . . . . . . 19  |-  ( a  =  C  ->  (
a  =/=  A  <->  C  =/=  A ) )
8482, 83anbi12d 747 . . . . . . . . . . . . . . . . . 18  |-  ( a  =  C  ->  (
( a  e.  _V  /\  a  =/=  A )  <-> 
( C  e.  _V  /\  C  =/=  A ) ) )
85 eleq1 2689 . . . . . . . . . . . . . . . . . 18  |-  ( b  =  F  ->  (
b  e.  _V  <->  F  e.  _V ) )
8684, 85bi2anan9 917 . . . . . . . . . . . . . . . . 17  |-  ( ( a  =  C  /\  b  =  F )  ->  ( ( ( a  e.  _V  /\  a  =/=  A )  /\  b  e.  _V )  <->  ( ( C  e.  _V  /\  C  =/=  A )  /\  F  e.  _V ) ) )
8781, 86anbi12d 747 . . . . . . . . . . . . . . . 16  |-  ( ( a  =  C  /\  b  =  F )  ->  ( ( x  = 
<. a ,  b >.  /\  ( ( a  e. 
_V  /\  a  =/=  A )  /\  b  e. 
_V ) )  <->  ( x  =  <. C ,  F >.  /\  ( ( C  e.  _V  /\  C  =/=  A )  /\  F  e.  _V ) ) ) )
8887spc2egv 3295 . . . . . . . . . . . . . . 15  |-  ( ( C  e.  V  /\  F  e.  V )  ->  ( ( x  = 
<. C ,  F >.  /\  ( ( C  e. 
_V  /\  C  =/=  A )  /\  F  e. 
_V ) )  ->  E. a E. b ( x  =  <. a ,  b >.  /\  (
( a  e.  _V  /\  a  =/=  A )  /\  b  e.  _V ) ) ) )
8971, 75, 88syl2anc 693 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( x  = 
<. C ,  F >.  /\  ( ( C  e. 
_V  /\  C  =/=  A )  /\  F  e. 
_V ) )  ->  E. a E. b ( x  =  <. a ,  b >.  /\  (
( a  e.  _V  /\  a  =/=  A )  /\  b  e.  _V ) ) ) )
9089adantl 482 . . . . . . . . . . . . 13  |-  ( ( x  =  <. C ,  F >.  /\  ph )  -> 
( ( x  = 
<. C ,  F >.  /\  ( ( C  e. 
_V  /\  C  =/=  A )  /\  F  e. 
_V ) )  ->  E. a E. b ( x  =  <. a ,  b >.  /\  (
( a  e.  _V  /\  a  =/=  A )  /\  b  e.  _V ) ) ) )
9179, 90mpd 15 . . . . . . . . . . . 12  |-  ( ( x  =  <. C ,  F >.  /\  ph )  ->  E. a E. b ( x  =  <. a ,  b >.  /\  (
( a  e.  _V  /\  a  =/=  A )  /\  b  e.  _V ) ) )
9270, 91jaoian 824 . . . . . . . . . . 11  |-  ( ( ( x  =  <. B ,  E >.  \/  x  =  <. C ,  F >. )  /\  ph )  ->  E. a E. b
( x  =  <. a ,  b >.  /\  (
( a  e.  _V  /\  a  =/=  A )  /\  b  e.  _V ) ) )
939anbi1i 731 . . . . . . . . . . . . 13  |-  ( ( a  e.  ( _V 
\  { A }
)  /\  b  e.  _V )  <->  ( ( a  e.  _V  /\  a  =/=  A )  /\  b  e.  _V ) )
9493anbi2i 730 . . . . . . . . . . . 12  |-  ( ( x  =  <. a ,  b >.  /\  (
a  e.  ( _V 
\  { A }
)  /\  b  e.  _V ) )  <->  ( x  =  <. a ,  b
>.  /\  ( ( a  e.  _V  /\  a  =/=  A )  /\  b  e.  _V ) ) )
95942exbii 1775 . . . . . . . . . . 11  |-  ( E. a E. b ( x  =  <. a ,  b >.  /\  (
a  e.  ( _V 
\  { A }
)  /\  b  e.  _V ) )  <->  E. a E. b ( x  = 
<. a ,  b >.  /\  ( ( a  e. 
_V  /\  a  =/=  A )  /\  b  e. 
_V ) ) )
9692, 95sylibr 224 . . . . . . . . . 10  |-  ( ( ( x  =  <. B ,  E >.  \/  x  =  <. C ,  F >. )  /\  ph )  ->  E. a E. b
( x  =  <. a ,  b >.  /\  (
a  e.  ( _V 
\  { A }
)  /\  b  e.  _V ) ) )
9749, 96jca 554 . . . . . . . . 9  |-  ( ( ( x  =  <. B ,  E >.  \/  x  =  <. C ,  F >. )  /\  ph )  ->  ( x  e.  T  /\  E. a E. b
( x  =  <. a ,  b >.  /\  (
a  e.  ( _V 
\  { A }
)  /\  b  e.  _V ) ) ) )
9897ex 450 . . . . . . . 8  |-  ( ( x  =  <. B ,  E >.  \/  x  = 
<. C ,  F >. )  ->  ( ph  ->  ( x  e.  T  /\  E. a E. b ( x  =  <. a ,  b >.  /\  (
a  e.  ( _V 
\  { A }
)  /\  b  e.  _V ) ) ) ) )
9937, 98sylbi 207 . . . . . . 7  |-  ( x  e.  { <. B ,  E >. ,  <. C ,  F >. }  ->  ( ph  ->  ( x  e.  T  /\  E. a E. b ( x  = 
<. a ,  b >.  /\  ( a  e.  ( _V  \  { A } )  /\  b  e.  _V ) ) ) ) )
10099com12 32 . . . . . 6  |-  ( ph  ->  ( x  e.  { <. B ,  E >. , 
<. C ,  F >. }  ->  ( x  e.  T  /\  E. a E. b ( x  = 
<. a ,  b >.  /\  ( a  e.  ( _V  \  { A } )  /\  b  e.  _V ) ) ) ) )
10142, 100impbid 202 . . . . 5  |-  ( ph  ->  ( ( x  e.  T  /\  E. a E. b ( x  = 
<. a ,  b >.  /\  ( a  e.  ( _V  \  { A } )  /\  b  e.  _V ) ) )  <-> 
x  e.  { <. B ,  E >. ,  <. C ,  F >. } ) )
1024, 101syl5bb 272 . . . 4  |-  ( ph  ->  ( ( x  e.  T  /\  x  e.  ( ( _V  \  { A } )  X. 
_V ) )  <->  x  e.  {
<. B ,  E >. , 
<. C ,  F >. } ) )
1032, 102syl5bb 272 . . 3  |-  ( ph  ->  ( x  e.  ( T  i^i  ( ( _V  \  { A } )  X.  _V ) )  <->  x  e.  {
<. B ,  E >. , 
<. C ,  F >. } ) )
104103eqrdv 2620 . 2  |-  ( ph  ->  ( T  i^i  (
( _V  \  { A } )  X.  _V ) )  =  { <. B ,  E >. , 
<. C ,  F >. } )
1051, 104syl5eq 2668 1  |-  ( ph  ->  ( T  |`  ( _V  \  { A }
) )  =  { <. B ,  E >. , 
<. C ,  F >. } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    \/ w3o 1036    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   _Vcvv 3200    \ cdif 3571    i^i cin 3573   {csn 4177   {cpr 4179   {ctp 4181   <.cop 4183    X. cxp 5112    |` cres 5116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-opab 4713  df-xp 5120  df-res 5126
This theorem is referenced by:  estrres  16779
  Copyright terms: Public domain W3C validator