MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spc2egv Structured version   Visualization version   Unicode version

Theorem spc2egv 3295
Description: Existential specialization with two quantifiers, using implicit substitution. (Contributed by NM, 3-Aug-1995.)
Hypothesis
Ref Expression
spc2egv.1  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph  <->  ps )
)
Assertion
Ref Expression
spc2egv  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ps  ->  E. x E. y ph ) )
Distinct variable groups:    x, y, A    x, B, y    ps, x, y
Allowed substitution hints:    ph( x, y)    V( x, y)    W( x, y)

Proof of Theorem spc2egv
StepHypRef Expression
1 elisset 3215 . . . 4  |-  ( A  e.  V  ->  E. x  x  =  A )
2 elisset 3215 . . . 4  |-  ( B  e.  W  ->  E. y 
y  =  B )
31, 2anim12i 590 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( E. x  x  =  A  /\  E. y  y  =  B
) )
4 eeanv 2182 . . 3  |-  ( E. x E. y ( x  =  A  /\  y  =  B )  <->  ( E. x  x  =  A  /\  E. y 
y  =  B ) )
53, 4sylibr 224 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  E. x E. y
( x  =  A  /\  y  =  B ) )
6 spc2egv.1 . . . 4  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph  <->  ps )
)
76biimprcd 240 . . 3  |-  ( ps 
->  ( ( x  =  A  /\  y  =  B )  ->  ph )
)
872eximdv 1848 . 2  |-  ( ps 
->  ( E. x E. y ( x  =  A  /\  y  =  B )  ->  E. x E. y ph ) )
95, 8syl5com 31 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ps  ->  E. x E. y ph ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-v 3202
This theorem is referenced by:  spc2gv  3296  spc2ev  3301  tpres  6466  addsrpr  9896  mulsrpr  9897  2pthon3v  26839  umgr2wlk  26845  0pthonv  26990  1pthon2v  27013  dvnprodlem1  40161
  Copyright terms: Public domain W3C validator